Prove that $ sumlimits_{i=1}^ infty frac{(-1)^{i+1}}{sqrt{i}}$ converges, using Abel's summation formula
$begingroup$
Let $(a_n)$ and $(b_n)$ be two sequences. Let $A_n = sum_{k=1}^n a_k$ and $A_0 = 0$. Prove that
$$sum_{n=p}^q a_n b_n = sum_{n=p}^{q-1} A_n(b_n - b_{n+1}) + A_qb_q - A_{p-1}b_p$$
for each $qgeq p geq 1$
Also, using this result prove that the series
$$ sum_{i=1}^ infty frac{(-1)^{i+1}}{sqrt{i}}$$
converges.
For the second, converge part, the series continues like $1,frac{-1}{sqrt2},frac{1}{sqrt3},frac{-1}{sqrt4}$. So it converges to 0. But I do not know how to prove first part also using the first part to show this series converges.
sequences-and-series summation-by-parts
$endgroup$
add a comment |
$begingroup$
Let $(a_n)$ and $(b_n)$ be two sequences. Let $A_n = sum_{k=1}^n a_k$ and $A_0 = 0$. Prove that
$$sum_{n=p}^q a_n b_n = sum_{n=p}^{q-1} A_n(b_n - b_{n+1}) + A_qb_q - A_{p-1}b_p$$
for each $qgeq p geq 1$
Also, using this result prove that the series
$$ sum_{i=1}^ infty frac{(-1)^{i+1}}{sqrt{i}}$$
converges.
For the second, converge part, the series continues like $1,frac{-1}{sqrt2},frac{1}{sqrt3},frac{-1}{sqrt4}$. So it converges to 0. But I do not know how to prove first part also using the first part to show this series converges.
sequences-and-series summation-by-parts
$endgroup$
1
$begingroup$
Start with $sum_{n=p}^q a_n b_n = sum_{n=p}^q A_n b_n - sum_{n=p}^q A_{n-1} b_n$. And $sum_{i=1}^ infty frac{(-1)^{i+1}}{sqrt{i}} ne 0$
$endgroup$
– reuns
Nov 23 '18 at 5:10
$begingroup$
Summation by parts
$endgroup$
– JavaMan
Nov 23 '18 at 5:29
add a comment |
$begingroup$
Let $(a_n)$ and $(b_n)$ be two sequences. Let $A_n = sum_{k=1}^n a_k$ and $A_0 = 0$. Prove that
$$sum_{n=p}^q a_n b_n = sum_{n=p}^{q-1} A_n(b_n - b_{n+1}) + A_qb_q - A_{p-1}b_p$$
for each $qgeq p geq 1$
Also, using this result prove that the series
$$ sum_{i=1}^ infty frac{(-1)^{i+1}}{sqrt{i}}$$
converges.
For the second, converge part, the series continues like $1,frac{-1}{sqrt2},frac{1}{sqrt3},frac{-1}{sqrt4}$. So it converges to 0. But I do not know how to prove first part also using the first part to show this series converges.
sequences-and-series summation-by-parts
$endgroup$
Let $(a_n)$ and $(b_n)$ be two sequences. Let $A_n = sum_{k=1}^n a_k$ and $A_0 = 0$. Prove that
$$sum_{n=p}^q a_n b_n = sum_{n=p}^{q-1} A_n(b_n - b_{n+1}) + A_qb_q - A_{p-1}b_p$$
for each $qgeq p geq 1$
Also, using this result prove that the series
$$ sum_{i=1}^ infty frac{(-1)^{i+1}}{sqrt{i}}$$
converges.
For the second, converge part, the series continues like $1,frac{-1}{sqrt2},frac{1}{sqrt3},frac{-1}{sqrt4}$. So it converges to 0. But I do not know how to prove first part also using the first part to show this series converges.
sequences-and-series summation-by-parts
sequences-and-series summation-by-parts
edited Dec 14 '18 at 11:28
Did
249k23228466
249k23228466
asked Nov 23 '18 at 5:03
PumpkinPumpkin
5021419
5021419
1
$begingroup$
Start with $sum_{n=p}^q a_n b_n = sum_{n=p}^q A_n b_n - sum_{n=p}^q A_{n-1} b_n$. And $sum_{i=1}^ infty frac{(-1)^{i+1}}{sqrt{i}} ne 0$
$endgroup$
– reuns
Nov 23 '18 at 5:10
$begingroup$
Summation by parts
$endgroup$
– JavaMan
Nov 23 '18 at 5:29
add a comment |
1
$begingroup$
Start with $sum_{n=p}^q a_n b_n = sum_{n=p}^q A_n b_n - sum_{n=p}^q A_{n-1} b_n$. And $sum_{i=1}^ infty frac{(-1)^{i+1}}{sqrt{i}} ne 0$
$endgroup$
– reuns
Nov 23 '18 at 5:10
$begingroup$
Summation by parts
$endgroup$
– JavaMan
Nov 23 '18 at 5:29
1
1
$begingroup$
Start with $sum_{n=p}^q a_n b_n = sum_{n=p}^q A_n b_n - sum_{n=p}^q A_{n-1} b_n$. And $sum_{i=1}^ infty frac{(-1)^{i+1}}{sqrt{i}} ne 0$
$endgroup$
– reuns
Nov 23 '18 at 5:10
$begingroup$
Start with $sum_{n=p}^q a_n b_n = sum_{n=p}^q A_n b_n - sum_{n=p}^q A_{n-1} b_n$. And $sum_{i=1}^ infty frac{(-1)^{i+1}}{sqrt{i}} ne 0$
$endgroup$
– reuns
Nov 23 '18 at 5:10
$begingroup$
Summation by parts
$endgroup$
– JavaMan
Nov 23 '18 at 5:29
$begingroup$
Summation by parts
$endgroup$
– JavaMan
Nov 23 '18 at 5:29
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Take $a_n=(-1)^{n+1}$ and $b_n=frac 1 {sqrt n}$. Check that $A_n$ is $1$ or $0$ for all $n$. Next note that $b_n-b_{n+1}=frac {sqrt {n+1}-sqrt {n}} {sqrt {n+1}sqrt {n}}$ which can be written as $frac 1 {sqrt {n+1}sqrt {n}(sqrt {n+1}+sqrt {n})} leq frac 1 {n^{3/2}}$. Use the fact that $sum frac 1 {n^{3/2}}<infty$ to complete the argument.
$endgroup$
add a comment |
$begingroup$
Answer for the second question:
$sumlimits_{n=p}^q a_n b_n = sumlimits_{n=p}^{q-1} A_n(b_n - b_{n+1}) + A_qb_q - A_{p-1}b_p$
Let's see the RHS of the statement:
$ sumlimits_{n=p}^{q-1} A_nb_n - sumlimits_{n=p}^{q-1}A_nb_{n+1} + A_qb_q - A_{p-1}b_p$
We can realize that
$sumlimits_{n=p}^{q} A_nb_n=sumlimits_{n=p}^{q-1} A_nb_n+A_qb_q$ and
$sumlimits_{n=p-1}^{q-1}A_nb_{n+1}=sumlimits_{n=p}^{q-1}A_nb_{n+1}+A_{p-1}b_p$
So the RHS equal to:
$sumlimits_{n=p}^{q} A_nb_n-sumlimits_{n=p-1}^{q-1}A_nb_{n+1}$
After performing the reindex of the second term we get:
$sumlimits_{n=p}^{q} A_nb_n-sumlimits_{n=p}^{q}A_{n-1}b_{n}$ and realize that
$A_n - A_{n-1}=a_n$ we get the LHS of the statement: $sumlimits_{n=p}^q a_n b_n$
$endgroup$
add a comment |
$begingroup$
FYI, Determination of the value of the sum.
$S=sumlimits_{i=1}^ infty frac{(-1)^{i+1}}{sqrt{i}}$
Separate the sum accordance with even and odd terms. If i even then $i=2m$ and if i odd then $i=2m-1$
$S=sumlimits_{m=1}^ inftybig( frac{1}{sqrt{2m-1}}-frac{1}{sqrt{2m}}big)=frac{1}{sqrt{2}}sumlimits_{m=0}^ inftybig( frac{1}{sqrt{m+frac{1}{2}}}-frac{1}{sqrt{m+1}}big)=frac{1}{sqrt{2}}sumlimits_{m=0}^ infty frac{1}{sqrt{m+frac{1}{2}}}-frac{1}{sqrt{2}}sumlimits_{m=1}^ inftyfrac{1}{sqrt{m}}$
From the definition of the and Hurwitz zeta functions we get:
$S=frac{1}{sqrt{2}}zeta(frac{1}{2},frac{1}{2})-frac{1}{sqrt{2}}zeta(frac{1}{2},1)$, as $zeta(frac{1}{2},1)=zeta(frac{1}{2})$
and using the equality: $zeta(s,frac{1}{2})=(2^{-s}-1)zeta(s)$ (where $zeta(s)$ is the Riemann zeta function),
we have the following result:
$S=(1-sqrt{2})zeta(frac{1}{2})approx 0.60489...$
$endgroup$
$begingroup$
Unfortunately, both series $$sumlimits_{m=0}^ infty frac{1}{sqrt{m+frac{1}{2}}}$$ and $$sumlimits_{m=1}^ inftyfrac{1}{sqrt{m}}$$ diverge hence what this approach amounts to is to consider an indeterminate form $$infty-infty$$ as if it was not indeterminate. Not good!
$endgroup$
– Did
Dec 14 '18 at 11:26
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3009990%2fprove-that-sum-limits-i-1-infty-frac-1i1-sqrti-converges-u%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Take $a_n=(-1)^{n+1}$ and $b_n=frac 1 {sqrt n}$. Check that $A_n$ is $1$ or $0$ for all $n$. Next note that $b_n-b_{n+1}=frac {sqrt {n+1}-sqrt {n}} {sqrt {n+1}sqrt {n}}$ which can be written as $frac 1 {sqrt {n+1}sqrt {n}(sqrt {n+1}+sqrt {n})} leq frac 1 {n^{3/2}}$. Use the fact that $sum frac 1 {n^{3/2}}<infty$ to complete the argument.
$endgroup$
add a comment |
$begingroup$
Take $a_n=(-1)^{n+1}$ and $b_n=frac 1 {sqrt n}$. Check that $A_n$ is $1$ or $0$ for all $n$. Next note that $b_n-b_{n+1}=frac {sqrt {n+1}-sqrt {n}} {sqrt {n+1}sqrt {n}}$ which can be written as $frac 1 {sqrt {n+1}sqrt {n}(sqrt {n+1}+sqrt {n})} leq frac 1 {n^{3/2}}$. Use the fact that $sum frac 1 {n^{3/2}}<infty$ to complete the argument.
$endgroup$
add a comment |
$begingroup$
Take $a_n=(-1)^{n+1}$ and $b_n=frac 1 {sqrt n}$. Check that $A_n$ is $1$ or $0$ for all $n$. Next note that $b_n-b_{n+1}=frac {sqrt {n+1}-sqrt {n}} {sqrt {n+1}sqrt {n}}$ which can be written as $frac 1 {sqrt {n+1}sqrt {n}(sqrt {n+1}+sqrt {n})} leq frac 1 {n^{3/2}}$. Use the fact that $sum frac 1 {n^{3/2}}<infty$ to complete the argument.
$endgroup$
Take $a_n=(-1)^{n+1}$ and $b_n=frac 1 {sqrt n}$. Check that $A_n$ is $1$ or $0$ for all $n$. Next note that $b_n-b_{n+1}=frac {sqrt {n+1}-sqrt {n}} {sqrt {n+1}sqrt {n}}$ which can be written as $frac 1 {sqrt {n+1}sqrt {n}(sqrt {n+1}+sqrt {n})} leq frac 1 {n^{3/2}}$. Use the fact that $sum frac 1 {n^{3/2}}<infty$ to complete the argument.
answered Nov 23 '18 at 5:30
Kavi Rama MurthyKavi Rama Murthy
73.6k53170
73.6k53170
add a comment |
add a comment |
$begingroup$
Answer for the second question:
$sumlimits_{n=p}^q a_n b_n = sumlimits_{n=p}^{q-1} A_n(b_n - b_{n+1}) + A_qb_q - A_{p-1}b_p$
Let's see the RHS of the statement:
$ sumlimits_{n=p}^{q-1} A_nb_n - sumlimits_{n=p}^{q-1}A_nb_{n+1} + A_qb_q - A_{p-1}b_p$
We can realize that
$sumlimits_{n=p}^{q} A_nb_n=sumlimits_{n=p}^{q-1} A_nb_n+A_qb_q$ and
$sumlimits_{n=p-1}^{q-1}A_nb_{n+1}=sumlimits_{n=p}^{q-1}A_nb_{n+1}+A_{p-1}b_p$
So the RHS equal to:
$sumlimits_{n=p}^{q} A_nb_n-sumlimits_{n=p-1}^{q-1}A_nb_{n+1}$
After performing the reindex of the second term we get:
$sumlimits_{n=p}^{q} A_nb_n-sumlimits_{n=p}^{q}A_{n-1}b_{n}$ and realize that
$A_n - A_{n-1}=a_n$ we get the LHS of the statement: $sumlimits_{n=p}^q a_n b_n$
$endgroup$
add a comment |
$begingroup$
Answer for the second question:
$sumlimits_{n=p}^q a_n b_n = sumlimits_{n=p}^{q-1} A_n(b_n - b_{n+1}) + A_qb_q - A_{p-1}b_p$
Let's see the RHS of the statement:
$ sumlimits_{n=p}^{q-1} A_nb_n - sumlimits_{n=p}^{q-1}A_nb_{n+1} + A_qb_q - A_{p-1}b_p$
We can realize that
$sumlimits_{n=p}^{q} A_nb_n=sumlimits_{n=p}^{q-1} A_nb_n+A_qb_q$ and
$sumlimits_{n=p-1}^{q-1}A_nb_{n+1}=sumlimits_{n=p}^{q-1}A_nb_{n+1}+A_{p-1}b_p$
So the RHS equal to:
$sumlimits_{n=p}^{q} A_nb_n-sumlimits_{n=p-1}^{q-1}A_nb_{n+1}$
After performing the reindex of the second term we get:
$sumlimits_{n=p}^{q} A_nb_n-sumlimits_{n=p}^{q}A_{n-1}b_{n}$ and realize that
$A_n - A_{n-1}=a_n$ we get the LHS of the statement: $sumlimits_{n=p}^q a_n b_n$
$endgroup$
add a comment |
$begingroup$
Answer for the second question:
$sumlimits_{n=p}^q a_n b_n = sumlimits_{n=p}^{q-1} A_n(b_n - b_{n+1}) + A_qb_q - A_{p-1}b_p$
Let's see the RHS of the statement:
$ sumlimits_{n=p}^{q-1} A_nb_n - sumlimits_{n=p}^{q-1}A_nb_{n+1} + A_qb_q - A_{p-1}b_p$
We can realize that
$sumlimits_{n=p}^{q} A_nb_n=sumlimits_{n=p}^{q-1} A_nb_n+A_qb_q$ and
$sumlimits_{n=p-1}^{q-1}A_nb_{n+1}=sumlimits_{n=p}^{q-1}A_nb_{n+1}+A_{p-1}b_p$
So the RHS equal to:
$sumlimits_{n=p}^{q} A_nb_n-sumlimits_{n=p-1}^{q-1}A_nb_{n+1}$
After performing the reindex of the second term we get:
$sumlimits_{n=p}^{q} A_nb_n-sumlimits_{n=p}^{q}A_{n-1}b_{n}$ and realize that
$A_n - A_{n-1}=a_n$ we get the LHS of the statement: $sumlimits_{n=p}^q a_n b_n$
$endgroup$
Answer for the second question:
$sumlimits_{n=p}^q a_n b_n = sumlimits_{n=p}^{q-1} A_n(b_n - b_{n+1}) + A_qb_q - A_{p-1}b_p$
Let's see the RHS of the statement:
$ sumlimits_{n=p}^{q-1} A_nb_n - sumlimits_{n=p}^{q-1}A_nb_{n+1} + A_qb_q - A_{p-1}b_p$
We can realize that
$sumlimits_{n=p}^{q} A_nb_n=sumlimits_{n=p}^{q-1} A_nb_n+A_qb_q$ and
$sumlimits_{n=p-1}^{q-1}A_nb_{n+1}=sumlimits_{n=p}^{q-1}A_nb_{n+1}+A_{p-1}b_p$
So the RHS equal to:
$sumlimits_{n=p}^{q} A_nb_n-sumlimits_{n=p-1}^{q-1}A_nb_{n+1}$
After performing the reindex of the second term we get:
$sumlimits_{n=p}^{q} A_nb_n-sumlimits_{n=p}^{q}A_{n-1}b_{n}$ and realize that
$A_n - A_{n-1}=a_n$ we get the LHS of the statement: $sumlimits_{n=p}^q a_n b_n$
answered Nov 24 '18 at 7:01
JV.StalkerJV.Stalker
933149
933149
add a comment |
add a comment |
$begingroup$
FYI, Determination of the value of the sum.
$S=sumlimits_{i=1}^ infty frac{(-1)^{i+1}}{sqrt{i}}$
Separate the sum accordance with even and odd terms. If i even then $i=2m$ and if i odd then $i=2m-1$
$S=sumlimits_{m=1}^ inftybig( frac{1}{sqrt{2m-1}}-frac{1}{sqrt{2m}}big)=frac{1}{sqrt{2}}sumlimits_{m=0}^ inftybig( frac{1}{sqrt{m+frac{1}{2}}}-frac{1}{sqrt{m+1}}big)=frac{1}{sqrt{2}}sumlimits_{m=0}^ infty frac{1}{sqrt{m+frac{1}{2}}}-frac{1}{sqrt{2}}sumlimits_{m=1}^ inftyfrac{1}{sqrt{m}}$
From the definition of the and Hurwitz zeta functions we get:
$S=frac{1}{sqrt{2}}zeta(frac{1}{2},frac{1}{2})-frac{1}{sqrt{2}}zeta(frac{1}{2},1)$, as $zeta(frac{1}{2},1)=zeta(frac{1}{2})$
and using the equality: $zeta(s,frac{1}{2})=(2^{-s}-1)zeta(s)$ (where $zeta(s)$ is the Riemann zeta function),
we have the following result:
$S=(1-sqrt{2})zeta(frac{1}{2})approx 0.60489...$
$endgroup$
$begingroup$
Unfortunately, both series $$sumlimits_{m=0}^ infty frac{1}{sqrt{m+frac{1}{2}}}$$ and $$sumlimits_{m=1}^ inftyfrac{1}{sqrt{m}}$$ diverge hence what this approach amounts to is to consider an indeterminate form $$infty-infty$$ as if it was not indeterminate. Not good!
$endgroup$
– Did
Dec 14 '18 at 11:26
add a comment |
$begingroup$
FYI, Determination of the value of the sum.
$S=sumlimits_{i=1}^ infty frac{(-1)^{i+1}}{sqrt{i}}$
Separate the sum accordance with even and odd terms. If i even then $i=2m$ and if i odd then $i=2m-1$
$S=sumlimits_{m=1}^ inftybig( frac{1}{sqrt{2m-1}}-frac{1}{sqrt{2m}}big)=frac{1}{sqrt{2}}sumlimits_{m=0}^ inftybig( frac{1}{sqrt{m+frac{1}{2}}}-frac{1}{sqrt{m+1}}big)=frac{1}{sqrt{2}}sumlimits_{m=0}^ infty frac{1}{sqrt{m+frac{1}{2}}}-frac{1}{sqrt{2}}sumlimits_{m=1}^ inftyfrac{1}{sqrt{m}}$
From the definition of the and Hurwitz zeta functions we get:
$S=frac{1}{sqrt{2}}zeta(frac{1}{2},frac{1}{2})-frac{1}{sqrt{2}}zeta(frac{1}{2},1)$, as $zeta(frac{1}{2},1)=zeta(frac{1}{2})$
and using the equality: $zeta(s,frac{1}{2})=(2^{-s}-1)zeta(s)$ (where $zeta(s)$ is the Riemann zeta function),
we have the following result:
$S=(1-sqrt{2})zeta(frac{1}{2})approx 0.60489...$
$endgroup$
$begingroup$
Unfortunately, both series $$sumlimits_{m=0}^ infty frac{1}{sqrt{m+frac{1}{2}}}$$ and $$sumlimits_{m=1}^ inftyfrac{1}{sqrt{m}}$$ diverge hence what this approach amounts to is to consider an indeterminate form $$infty-infty$$ as if it was not indeterminate. Not good!
$endgroup$
– Did
Dec 14 '18 at 11:26
add a comment |
$begingroup$
FYI, Determination of the value of the sum.
$S=sumlimits_{i=1}^ infty frac{(-1)^{i+1}}{sqrt{i}}$
Separate the sum accordance with even and odd terms. If i even then $i=2m$ and if i odd then $i=2m-1$
$S=sumlimits_{m=1}^ inftybig( frac{1}{sqrt{2m-1}}-frac{1}{sqrt{2m}}big)=frac{1}{sqrt{2}}sumlimits_{m=0}^ inftybig( frac{1}{sqrt{m+frac{1}{2}}}-frac{1}{sqrt{m+1}}big)=frac{1}{sqrt{2}}sumlimits_{m=0}^ infty frac{1}{sqrt{m+frac{1}{2}}}-frac{1}{sqrt{2}}sumlimits_{m=1}^ inftyfrac{1}{sqrt{m}}$
From the definition of the and Hurwitz zeta functions we get:
$S=frac{1}{sqrt{2}}zeta(frac{1}{2},frac{1}{2})-frac{1}{sqrt{2}}zeta(frac{1}{2},1)$, as $zeta(frac{1}{2},1)=zeta(frac{1}{2})$
and using the equality: $zeta(s,frac{1}{2})=(2^{-s}-1)zeta(s)$ (where $zeta(s)$ is the Riemann zeta function),
we have the following result:
$S=(1-sqrt{2})zeta(frac{1}{2})approx 0.60489...$
$endgroup$
FYI, Determination of the value of the sum.
$S=sumlimits_{i=1}^ infty frac{(-1)^{i+1}}{sqrt{i}}$
Separate the sum accordance with even and odd terms. If i even then $i=2m$ and if i odd then $i=2m-1$
$S=sumlimits_{m=1}^ inftybig( frac{1}{sqrt{2m-1}}-frac{1}{sqrt{2m}}big)=frac{1}{sqrt{2}}sumlimits_{m=0}^ inftybig( frac{1}{sqrt{m+frac{1}{2}}}-frac{1}{sqrt{m+1}}big)=frac{1}{sqrt{2}}sumlimits_{m=0}^ infty frac{1}{sqrt{m+frac{1}{2}}}-frac{1}{sqrt{2}}sumlimits_{m=1}^ inftyfrac{1}{sqrt{m}}$
From the definition of the and Hurwitz zeta functions we get:
$S=frac{1}{sqrt{2}}zeta(frac{1}{2},frac{1}{2})-frac{1}{sqrt{2}}zeta(frac{1}{2},1)$, as $zeta(frac{1}{2},1)=zeta(frac{1}{2})$
and using the equality: $zeta(s,frac{1}{2})=(2^{-s}-1)zeta(s)$ (where $zeta(s)$ is the Riemann zeta function),
we have the following result:
$S=(1-sqrt{2})zeta(frac{1}{2})approx 0.60489...$
answered Nov 23 '18 at 16:42
JV.StalkerJV.Stalker
933149
933149
$begingroup$
Unfortunately, both series $$sumlimits_{m=0}^ infty frac{1}{sqrt{m+frac{1}{2}}}$$ and $$sumlimits_{m=1}^ inftyfrac{1}{sqrt{m}}$$ diverge hence what this approach amounts to is to consider an indeterminate form $$infty-infty$$ as if it was not indeterminate. Not good!
$endgroup$
– Did
Dec 14 '18 at 11:26
add a comment |
$begingroup$
Unfortunately, both series $$sumlimits_{m=0}^ infty frac{1}{sqrt{m+frac{1}{2}}}$$ and $$sumlimits_{m=1}^ inftyfrac{1}{sqrt{m}}$$ diverge hence what this approach amounts to is to consider an indeterminate form $$infty-infty$$ as if it was not indeterminate. Not good!
$endgroup$
– Did
Dec 14 '18 at 11:26
$begingroup$
Unfortunately, both series $$sumlimits_{m=0}^ infty frac{1}{sqrt{m+frac{1}{2}}}$$ and $$sumlimits_{m=1}^ inftyfrac{1}{sqrt{m}}$$ diverge hence what this approach amounts to is to consider an indeterminate form $$infty-infty$$ as if it was not indeterminate. Not good!
$endgroup$
– Did
Dec 14 '18 at 11:26
$begingroup$
Unfortunately, both series $$sumlimits_{m=0}^ infty frac{1}{sqrt{m+frac{1}{2}}}$$ and $$sumlimits_{m=1}^ inftyfrac{1}{sqrt{m}}$$ diverge hence what this approach amounts to is to consider an indeterminate form $$infty-infty$$ as if it was not indeterminate. Not good!
$endgroup$
– Did
Dec 14 '18 at 11:26
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3009990%2fprove-that-sum-limits-i-1-infty-frac-1i1-sqrti-converges-u%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Start with $sum_{n=p}^q a_n b_n = sum_{n=p}^q A_n b_n - sum_{n=p}^q A_{n-1} b_n$. And $sum_{i=1}^ infty frac{(-1)^{i+1}}{sqrt{i}} ne 0$
$endgroup$
– reuns
Nov 23 '18 at 5:10
$begingroup$
Summation by parts
$endgroup$
– JavaMan
Nov 23 '18 at 5:29