Inverse of $A$ as a linear combination of $A$
$begingroup$
Can the matrix $A^{-1}$ be written as a linear combination of $A$ (as given below), where
$$A=begin{bmatrix}
a& b& c\
0 &a& d\
0 &0& a
end{bmatrix}$$
such that $a neq 0$?
So obviously $det(A)=a^3 neq 0$ so $A$ is invertible. Now the dimension of the $3 times 3$ matrix space over $mathbb{R}$ is $27$. So ${I, A, A^2, A^3 ldots A^{27} }$ is linearly dependent. So there exists scalars $c_i$ not all zero such that
$$c_0I+c_1A+c_2A^2 + ldots +c_{27}A^{27}=0,.$$
Now if $c_0 neq 0$ we can write
$$A^{-1}=frac{1}{c_0}(c_1+c_2A + ldots +c_{27}A^{26}=0),.$$
I cant seem to find a way to guarantee that $c_0 neq 0$. Need help.
linear-algebra matrices determinant inverse cayley-hamilton
$endgroup$
add a comment |
$begingroup$
Can the matrix $A^{-1}$ be written as a linear combination of $A$ (as given below), where
$$A=begin{bmatrix}
a& b& c\
0 &a& d\
0 &0& a
end{bmatrix}$$
such that $a neq 0$?
So obviously $det(A)=a^3 neq 0$ so $A$ is invertible. Now the dimension of the $3 times 3$ matrix space over $mathbb{R}$ is $27$. So ${I, A, A^2, A^3 ldots A^{27} }$ is linearly dependent. So there exists scalars $c_i$ not all zero such that
$$c_0I+c_1A+c_2A^2 + ldots +c_{27}A^{27}=0,.$$
Now if $c_0 neq 0$ we can write
$$A^{-1}=frac{1}{c_0}(c_1+c_2A + ldots +c_{27}A^{26}=0),.$$
I cant seem to find a way to guarantee that $c_0 neq 0$. Need help.
linear-algebra matrices determinant inverse cayley-hamilton
$endgroup$
2
$begingroup$
HINT: Cayley Hamilton.
$endgroup$
– b00n heT
Jun 22 '15 at 6:02
add a comment |
$begingroup$
Can the matrix $A^{-1}$ be written as a linear combination of $A$ (as given below), where
$$A=begin{bmatrix}
a& b& c\
0 &a& d\
0 &0& a
end{bmatrix}$$
such that $a neq 0$?
So obviously $det(A)=a^3 neq 0$ so $A$ is invertible. Now the dimension of the $3 times 3$ matrix space over $mathbb{R}$ is $27$. So ${I, A, A^2, A^3 ldots A^{27} }$ is linearly dependent. So there exists scalars $c_i$ not all zero such that
$$c_0I+c_1A+c_2A^2 + ldots +c_{27}A^{27}=0,.$$
Now if $c_0 neq 0$ we can write
$$A^{-1}=frac{1}{c_0}(c_1+c_2A + ldots +c_{27}A^{26}=0),.$$
I cant seem to find a way to guarantee that $c_0 neq 0$. Need help.
linear-algebra matrices determinant inverse cayley-hamilton
$endgroup$
Can the matrix $A^{-1}$ be written as a linear combination of $A$ (as given below), where
$$A=begin{bmatrix}
a& b& c\
0 &a& d\
0 &0& a
end{bmatrix}$$
such that $a neq 0$?
So obviously $det(A)=a^3 neq 0$ so $A$ is invertible. Now the dimension of the $3 times 3$ matrix space over $mathbb{R}$ is $27$. So ${I, A, A^2, A^3 ldots A^{27} }$ is linearly dependent. So there exists scalars $c_i$ not all zero such that
$$c_0I+c_1A+c_2A^2 + ldots +c_{27}A^{27}=0,.$$
Now if $c_0 neq 0$ we can write
$$A^{-1}=frac{1}{c_0}(c_1+c_2A + ldots +c_{27}A^{26}=0),.$$
I cant seem to find a way to guarantee that $c_0 neq 0$. Need help.
linear-algebra matrices determinant inverse cayley-hamilton
linear-algebra matrices determinant inverse cayley-hamilton
edited Dec 14 '18 at 11:57
Batominovski
33.2k33293
33.2k33293
asked Jun 22 '15 at 5:58
MizMiz
1,597624
1,597624
2
$begingroup$
HINT: Cayley Hamilton.
$endgroup$
– b00n heT
Jun 22 '15 at 6:02
add a comment |
2
$begingroup$
HINT: Cayley Hamilton.
$endgroup$
– b00n heT
Jun 22 '15 at 6:02
2
2
$begingroup$
HINT: Cayley Hamilton.
$endgroup$
– b00n heT
Jun 22 '15 at 6:02
$begingroup$
HINT: Cayley Hamilton.
$endgroup$
– b00n heT
Jun 22 '15 at 6:02
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Well, $(A-aI)^3=0$, right? Hence, $$A^3-3aA^2+3a^2A-a^3I=0,,$$ or $$A^{-1}=a^{-3}A^2-3a^{-2}A+3a^{-1}I,.$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1334554%2finverse-of-a-as-a-linear-combination-of-a%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Well, $(A-aI)^3=0$, right? Hence, $$A^3-3aA^2+3a^2A-a^3I=0,,$$ or $$A^{-1}=a^{-3}A^2-3a^{-2}A+3a^{-1}I,.$$
$endgroup$
add a comment |
$begingroup$
Well, $(A-aI)^3=0$, right? Hence, $$A^3-3aA^2+3a^2A-a^3I=0,,$$ or $$A^{-1}=a^{-3}A^2-3a^{-2}A+3a^{-1}I,.$$
$endgroup$
add a comment |
$begingroup$
Well, $(A-aI)^3=0$, right? Hence, $$A^3-3aA^2+3a^2A-a^3I=0,,$$ or $$A^{-1}=a^{-3}A^2-3a^{-2}A+3a^{-1}I,.$$
$endgroup$
Well, $(A-aI)^3=0$, right? Hence, $$A^3-3aA^2+3a^2A-a^3I=0,,$$ or $$A^{-1}=a^{-3}A^2-3a^{-2}A+3a^{-1}I,.$$
edited Dec 14 '18 at 11:58
answered Jun 22 '15 at 6:02
BatominovskiBatominovski
33.2k33293
33.2k33293
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1334554%2finverse-of-a-as-a-linear-combination-of-a%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
HINT: Cayley Hamilton.
$endgroup$
– b00n heT
Jun 22 '15 at 6:02