Inverse of $A$ as a linear combination of $A$












2












$begingroup$



Can the matrix $A^{-1}$ be written as a linear combination of $A$ (as given below), where
$$A=begin{bmatrix}
a& b& c\
0 &a& d\
0 &0& a
end{bmatrix}$$

such that $a neq 0$?




So obviously $det(A)=a^3 neq 0$ so $A$ is invertible. Now the dimension of the $3 times 3$ matrix space over $mathbb{R}$ is $27$. So ${I, A, A^2, A^3 ldots A^{27} }$ is linearly dependent. So there exists scalars $c_i$ not all zero such that
$$c_0I+c_1A+c_2A^2 + ldots +c_{27}A^{27}=0,.$$
Now if $c_0 neq 0$ we can write
$$A^{-1}=frac{1}{c_0}(c_1+c_2A + ldots +c_{27}A^{26}=0),.$$
I cant seem to find a way to guarantee that $c_0 neq 0$. Need help.










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    HINT: Cayley Hamilton.
    $endgroup$
    – b00n heT
    Jun 22 '15 at 6:02


















2












$begingroup$



Can the matrix $A^{-1}$ be written as a linear combination of $A$ (as given below), where
$$A=begin{bmatrix}
a& b& c\
0 &a& d\
0 &0& a
end{bmatrix}$$

such that $a neq 0$?




So obviously $det(A)=a^3 neq 0$ so $A$ is invertible. Now the dimension of the $3 times 3$ matrix space over $mathbb{R}$ is $27$. So ${I, A, A^2, A^3 ldots A^{27} }$ is linearly dependent. So there exists scalars $c_i$ not all zero such that
$$c_0I+c_1A+c_2A^2 + ldots +c_{27}A^{27}=0,.$$
Now if $c_0 neq 0$ we can write
$$A^{-1}=frac{1}{c_0}(c_1+c_2A + ldots +c_{27}A^{26}=0),.$$
I cant seem to find a way to guarantee that $c_0 neq 0$. Need help.










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    HINT: Cayley Hamilton.
    $endgroup$
    – b00n heT
    Jun 22 '15 at 6:02
















2












2








2


1



$begingroup$



Can the matrix $A^{-1}$ be written as a linear combination of $A$ (as given below), where
$$A=begin{bmatrix}
a& b& c\
0 &a& d\
0 &0& a
end{bmatrix}$$

such that $a neq 0$?




So obviously $det(A)=a^3 neq 0$ so $A$ is invertible. Now the dimension of the $3 times 3$ matrix space over $mathbb{R}$ is $27$. So ${I, A, A^2, A^3 ldots A^{27} }$ is linearly dependent. So there exists scalars $c_i$ not all zero such that
$$c_0I+c_1A+c_2A^2 + ldots +c_{27}A^{27}=0,.$$
Now if $c_0 neq 0$ we can write
$$A^{-1}=frac{1}{c_0}(c_1+c_2A + ldots +c_{27}A^{26}=0),.$$
I cant seem to find a way to guarantee that $c_0 neq 0$. Need help.










share|cite|improve this question











$endgroup$





Can the matrix $A^{-1}$ be written as a linear combination of $A$ (as given below), where
$$A=begin{bmatrix}
a& b& c\
0 &a& d\
0 &0& a
end{bmatrix}$$

such that $a neq 0$?




So obviously $det(A)=a^3 neq 0$ so $A$ is invertible. Now the dimension of the $3 times 3$ matrix space over $mathbb{R}$ is $27$. So ${I, A, A^2, A^3 ldots A^{27} }$ is linearly dependent. So there exists scalars $c_i$ not all zero such that
$$c_0I+c_1A+c_2A^2 + ldots +c_{27}A^{27}=0,.$$
Now if $c_0 neq 0$ we can write
$$A^{-1}=frac{1}{c_0}(c_1+c_2A + ldots +c_{27}A^{26}=0),.$$
I cant seem to find a way to guarantee that $c_0 neq 0$. Need help.







linear-algebra matrices determinant inverse cayley-hamilton






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 14 '18 at 11:57









Batominovski

33.2k33293




33.2k33293










asked Jun 22 '15 at 5:58









MizMiz

1,597624




1,597624








  • 2




    $begingroup$
    HINT: Cayley Hamilton.
    $endgroup$
    – b00n heT
    Jun 22 '15 at 6:02
















  • 2




    $begingroup$
    HINT: Cayley Hamilton.
    $endgroup$
    – b00n heT
    Jun 22 '15 at 6:02










2




2




$begingroup$
HINT: Cayley Hamilton.
$endgroup$
– b00n heT
Jun 22 '15 at 6:02






$begingroup$
HINT: Cayley Hamilton.
$endgroup$
– b00n heT
Jun 22 '15 at 6:02












1 Answer
1






active

oldest

votes


















4












$begingroup$

Well, $(A-aI)^3=0$, right? Hence, $$A^3-3aA^2+3a^2A-a^3I=0,,$$ or $$A^{-1}=a^{-3}A^2-3a^{-2}A+3a^{-1}I,.$$






share|cite|improve this answer











$endgroup$














    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1334554%2finverse-of-a-as-a-linear-combination-of-a%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    4












    $begingroup$

    Well, $(A-aI)^3=0$, right? Hence, $$A^3-3aA^2+3a^2A-a^3I=0,,$$ or $$A^{-1}=a^{-3}A^2-3a^{-2}A+3a^{-1}I,.$$






    share|cite|improve this answer











    $endgroup$


















      4












      $begingroup$

      Well, $(A-aI)^3=0$, right? Hence, $$A^3-3aA^2+3a^2A-a^3I=0,,$$ or $$A^{-1}=a^{-3}A^2-3a^{-2}A+3a^{-1}I,.$$






      share|cite|improve this answer











      $endgroup$
















        4












        4








        4





        $begingroup$

        Well, $(A-aI)^3=0$, right? Hence, $$A^3-3aA^2+3a^2A-a^3I=0,,$$ or $$A^{-1}=a^{-3}A^2-3a^{-2}A+3a^{-1}I,.$$






        share|cite|improve this answer











        $endgroup$



        Well, $(A-aI)^3=0$, right? Hence, $$A^3-3aA^2+3a^2A-a^3I=0,,$$ or $$A^{-1}=a^{-3}A^2-3a^{-2}A+3a^{-1}I,.$$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Dec 14 '18 at 11:58

























        answered Jun 22 '15 at 6:02









        BatominovskiBatominovski

        33.2k33293




        33.2k33293






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1334554%2finverse-of-a-as-a-linear-combination-of-a%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            How to change which sound is reproduced for terminal bell?

            Can I use Tabulator js library in my java Spring + Thymeleaf project?

            Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents