How do I make the characters have the same size? [duplicate]
This question already has an answer here:
equal size numerator and denominator
1 answer
Th following is the full code that produces the image shown below:
documentclass{article}
usepackage[utf8]{inputenc}
usepackage[english]{babel}
usepackage{amsthm}
usepackage{amsmath}
usepackage[left=1.5in, right=1.5in, top=0.5in]{geometry}
newtheorem{definition}{Definition}
newtheorem{theorem}{Theorem}
theoremstyle{remark}
begin{document}
title{Extra Credit}
maketitle
begin{definition}
If f is analytic at $z_0$, then the series
begin{equation}
f(z_0) + f'(z_0)(z-z_0) + frac{f''(z_0)}{2!}(z-z_0)^2 + cdots = sum_{n=0}^{infty} frac{f^{(n)}(z_0)}{n!}(z-z_0)^n
end{equation}
is called the Taylor series for f around $z_0$.
end{definition}
begin{theorem}
If f is analytic inside and on the simple closed positively oriented contour $Gamma$ and if $z_0$ is any point inside $Gamma$, then
begin{equation}
f^{(n)}(z_0) = frac{n!}{2pi i} int_{Gamma} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta hspace{1cm} (n=1,2,3, cdots )
end{equation}
end{theorem}
hrulefill
begin{theorem}
If f is analytic in the disk $|z-z_0|<R'$, then the Taylor series $(1)$ converges to $f(z)$ for all $z$ in this disk.
end{theorem}
begin{proof}
Suppose that the function textit{f} is analytic in the disk $|z-z_0|<R'$. We can define a positively oriented contour $C$ as $$ C:=Big{z:|z-z_0|=frac{R + R'}{2}, 0<R< R' Big}.$$ Letting $zeta$ be an arbitrary point on $C$ and applying Theorem 1 to $(1)$, we get
begin{equation}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta.
end{equation}\
Or equivalently, we have that
begin{align*}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
&= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
\ &= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{frac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
\ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta
end{align*}

The above image is created using
begin{align*}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
&= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
\ &= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{frac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
\ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta
end{align*}
which is extracted from the full code above. How can I resize the second line of the image, so that all the characters are the same size?
resize
marked as duplicate by Community♦ Mar 31 at 6:00
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
add a comment |
This question already has an answer here:
equal size numerator and denominator
1 answer
Th following is the full code that produces the image shown below:
documentclass{article}
usepackage[utf8]{inputenc}
usepackage[english]{babel}
usepackage{amsthm}
usepackage{amsmath}
usepackage[left=1.5in, right=1.5in, top=0.5in]{geometry}
newtheorem{definition}{Definition}
newtheorem{theorem}{Theorem}
theoremstyle{remark}
begin{document}
title{Extra Credit}
maketitle
begin{definition}
If f is analytic at $z_0$, then the series
begin{equation}
f(z_0) + f'(z_0)(z-z_0) + frac{f''(z_0)}{2!}(z-z_0)^2 + cdots = sum_{n=0}^{infty} frac{f^{(n)}(z_0)}{n!}(z-z_0)^n
end{equation}
is called the Taylor series for f around $z_0$.
end{definition}
begin{theorem}
If f is analytic inside and on the simple closed positively oriented contour $Gamma$ and if $z_0$ is any point inside $Gamma$, then
begin{equation}
f^{(n)}(z_0) = frac{n!}{2pi i} int_{Gamma} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta hspace{1cm} (n=1,2,3, cdots )
end{equation}
end{theorem}
hrulefill
begin{theorem}
If f is analytic in the disk $|z-z_0|<R'$, then the Taylor series $(1)$ converges to $f(z)$ for all $z$ in this disk.
end{theorem}
begin{proof}
Suppose that the function textit{f} is analytic in the disk $|z-z_0|<R'$. We can define a positively oriented contour $C$ as $$ C:=Big{z:|z-z_0|=frac{R + R'}{2}, 0<R< R' Big}.$$ Letting $zeta$ be an arbitrary point on $C$ and applying Theorem 1 to $(1)$, we get
begin{equation}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta.
end{equation}\
Or equivalently, we have that
begin{align*}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
&= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
\ &= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{frac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
\ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta
end{align*}

The above image is created using
begin{align*}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
&= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
\ &= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{frac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
\ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta
end{align*}
which is extracted from the full code above. How can I resize the second line of the image, so that all the characters are the same size?
resize
marked as duplicate by Community♦ Mar 31 at 6:00
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
1
Usedisplaystyleat the beginning of the outer denominator.
– L. F.
Mar 31 at 5:49
Some general typesetting issues: (a) Don't writetextif{f}; do write$f$. (b) Don't create paragraph breaks immediately beforebegin{equation},begin{align*}, etc. Don't usecdots; instead, writedots` and let LaTeX (and theamsmathpackage) decide which kind of typographic ellipsis to insert. (d) Either insertnoindentbeforehrulefillor, more simply, writehrule.
– Mico
Mar 31 at 6:08
I was wondering why we insertnoindentbeforehrulefill?
– K.M
Apr 1 at 3:12
add a comment |
This question already has an answer here:
equal size numerator and denominator
1 answer
Th following is the full code that produces the image shown below:
documentclass{article}
usepackage[utf8]{inputenc}
usepackage[english]{babel}
usepackage{amsthm}
usepackage{amsmath}
usepackage[left=1.5in, right=1.5in, top=0.5in]{geometry}
newtheorem{definition}{Definition}
newtheorem{theorem}{Theorem}
theoremstyle{remark}
begin{document}
title{Extra Credit}
maketitle
begin{definition}
If f is analytic at $z_0$, then the series
begin{equation}
f(z_0) + f'(z_0)(z-z_0) + frac{f''(z_0)}{2!}(z-z_0)^2 + cdots = sum_{n=0}^{infty} frac{f^{(n)}(z_0)}{n!}(z-z_0)^n
end{equation}
is called the Taylor series for f around $z_0$.
end{definition}
begin{theorem}
If f is analytic inside and on the simple closed positively oriented contour $Gamma$ and if $z_0$ is any point inside $Gamma$, then
begin{equation}
f^{(n)}(z_0) = frac{n!}{2pi i} int_{Gamma} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta hspace{1cm} (n=1,2,3, cdots )
end{equation}
end{theorem}
hrulefill
begin{theorem}
If f is analytic in the disk $|z-z_0|<R'$, then the Taylor series $(1)$ converges to $f(z)$ for all $z$ in this disk.
end{theorem}
begin{proof}
Suppose that the function textit{f} is analytic in the disk $|z-z_0|<R'$. We can define a positively oriented contour $C$ as $$ C:=Big{z:|z-z_0|=frac{R + R'}{2}, 0<R< R' Big}.$$ Letting $zeta$ be an arbitrary point on $C$ and applying Theorem 1 to $(1)$, we get
begin{equation}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta.
end{equation}\
Or equivalently, we have that
begin{align*}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
&= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
\ &= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{frac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
\ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta
end{align*}

The above image is created using
begin{align*}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
&= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
\ &= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{frac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
\ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta
end{align*}
which is extracted from the full code above. How can I resize the second line of the image, so that all the characters are the same size?
resize
This question already has an answer here:
equal size numerator and denominator
1 answer
Th following is the full code that produces the image shown below:
documentclass{article}
usepackage[utf8]{inputenc}
usepackage[english]{babel}
usepackage{amsthm}
usepackage{amsmath}
usepackage[left=1.5in, right=1.5in, top=0.5in]{geometry}
newtheorem{definition}{Definition}
newtheorem{theorem}{Theorem}
theoremstyle{remark}
begin{document}
title{Extra Credit}
maketitle
begin{definition}
If f is analytic at $z_0$, then the series
begin{equation}
f(z_0) + f'(z_0)(z-z_0) + frac{f''(z_0)}{2!}(z-z_0)^2 + cdots = sum_{n=0}^{infty} frac{f^{(n)}(z_0)}{n!}(z-z_0)^n
end{equation}
is called the Taylor series for f around $z_0$.
end{definition}
begin{theorem}
If f is analytic inside and on the simple closed positively oriented contour $Gamma$ and if $z_0$ is any point inside $Gamma$, then
begin{equation}
f^{(n)}(z_0) = frac{n!}{2pi i} int_{Gamma} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta hspace{1cm} (n=1,2,3, cdots )
end{equation}
end{theorem}
hrulefill
begin{theorem}
If f is analytic in the disk $|z-z_0|<R'$, then the Taylor series $(1)$ converges to $f(z)$ for all $z$ in this disk.
end{theorem}
begin{proof}
Suppose that the function textit{f} is analytic in the disk $|z-z_0|<R'$. We can define a positively oriented contour $C$ as $$ C:=Big{z:|z-z_0|=frac{R + R'}{2}, 0<R< R' Big}.$$ Letting $zeta$ be an arbitrary point on $C$ and applying Theorem 1 to $(1)$, we get
begin{equation}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta.
end{equation}\
Or equivalently, we have that
begin{align*}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
&= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
\ &= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{frac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
\ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta
end{align*}

The above image is created using
begin{align*}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
&= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
\ &= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{frac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
\ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta
end{align*}
which is extracted from the full code above. How can I resize the second line of the image, so that all the characters are the same size?
This question already has an answer here:
equal size numerator and denominator
1 answer
resize
resize
asked Mar 31 at 5:47
K.MK.M
1676
1676
marked as duplicate by Community♦ Mar 31 at 6:00
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
marked as duplicate by Community♦ Mar 31 at 6:00
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
1
Usedisplaystyleat the beginning of the outer denominator.
– L. F.
Mar 31 at 5:49
Some general typesetting issues: (a) Don't writetextif{f}; do write$f$. (b) Don't create paragraph breaks immediately beforebegin{equation},begin{align*}, etc. Don't usecdots; instead, writedots` and let LaTeX (and theamsmathpackage) decide which kind of typographic ellipsis to insert. (d) Either insertnoindentbeforehrulefillor, more simply, writehrule.
– Mico
Mar 31 at 6:08
I was wondering why we insertnoindentbeforehrulefill?
– K.M
Apr 1 at 3:12
add a comment |
1
Usedisplaystyleat the beginning of the outer denominator.
– L. F.
Mar 31 at 5:49
Some general typesetting issues: (a) Don't writetextif{f}; do write$f$. (b) Don't create paragraph breaks immediately beforebegin{equation},begin{align*}, etc. Don't usecdots; instead, writedots` and let LaTeX (and theamsmathpackage) decide which kind of typographic ellipsis to insert. (d) Either insertnoindentbeforehrulefillor, more simply, writehrule.
– Mico
Mar 31 at 6:08
I was wondering why we insertnoindentbeforehrulefill?
– K.M
Apr 1 at 3:12
1
1
Use
displaystyle at the beginning of the outer denominator.– L. F.
Mar 31 at 5:49
Use
displaystyle at the beginning of the outer denominator.– L. F.
Mar 31 at 5:49
Some general typesetting issues: (a) Don't write
textif{f}; do write $f$. (b) Don't create paragraph breaks immediately before begin{equation}, begin{align*}, etc. Don't use cdots; instead, write dots` and let LaTeX (and the amsmath package) decide which kind of typographic ellipsis to insert. (d) Either insert noindent before hrulefill or, more simply, write hrule.– Mico
Mar 31 at 6:08
Some general typesetting issues: (a) Don't write
textif{f}; do write $f$. (b) Don't create paragraph breaks immediately before begin{equation}, begin{align*}, etc. Don't use cdots; instead, write dots` and let LaTeX (and the amsmath package) decide which kind of typographic ellipsis to insert. (d) Either insert noindent before hrulefill or, more simply, write hrule.– Mico
Mar 31 at 6:08
I was wondering why we insert
noindent before hrulefill?– K.M
Apr 1 at 3:12
I was wondering why we insert
noindent before hrulefill?– K.M
Apr 1 at 3:12
add a comment |
1 Answer
1
active
oldest
votes
You want to
begin{align*}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
&= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
\
&= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{displaystylefrac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
\ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta
end{align*}
or simply dfrac as you can use amsmath package.

Please observe also that one backslash before end{align*} was removed.
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
You want to
begin{align*}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
&= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
\
&= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{displaystylefrac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
\ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta
end{align*}
or simply dfrac as you can use amsmath package.

Please observe also that one backslash before end{align*} was removed.
add a comment |
You want to
begin{align*}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
&= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
\
&= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{displaystylefrac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
\ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta
end{align*}
or simply dfrac as you can use amsmath package.

Please observe also that one backslash before end{align*} was removed.
add a comment |
You want to
begin{align*}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
&= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
\
&= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{displaystylefrac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
\ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta
end{align*}
or simply dfrac as you can use amsmath package.

Please observe also that one backslash before end{align*} was removed.
You want to
begin{align*}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
&= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
\
&= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{displaystylefrac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
\ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta
end{align*}
or simply dfrac as you can use amsmath package.

Please observe also that one backslash before end{align*} was removed.
edited Mar 31 at 6:10
answered Mar 31 at 5:50
Przemysław ScherwentkePrzemysław Scherwentke
30k54796
30k54796
add a comment |
add a comment |
1
Use
displaystyleat the beginning of the outer denominator.– L. F.
Mar 31 at 5:49
Some general typesetting issues: (a) Don't write
textif{f}; do write$f$. (b) Don't create paragraph breaks immediately beforebegin{equation},begin{align*}, etc. Don't usecdots; instead, writedots` and let LaTeX (and theamsmathpackage) decide which kind of typographic ellipsis to insert. (d) Either insertnoindentbeforehrulefillor, more simply, writehrule.– Mico
Mar 31 at 6:08
I was wondering why we insert
noindentbeforehrulefill?– K.M
Apr 1 at 3:12