How do I make the characters have the same size? [duplicate]
This question already has an answer here:
equal size numerator and denominator
1 answer
Th following is the full code that produces the image shown below:
documentclass{article}
usepackage[utf8]{inputenc}
usepackage[english]{babel}
usepackage{amsthm}
usepackage{amsmath}
usepackage[left=1.5in, right=1.5in, top=0.5in]{geometry}
newtheorem{definition}{Definition}
newtheorem{theorem}{Theorem}
theoremstyle{remark}
begin{document}
title{Extra Credit}
maketitle
begin{definition}
If f is analytic at $z_0$, then the series
begin{equation}
f(z_0) + f'(z_0)(z-z_0) + frac{f''(z_0)}{2!}(z-z_0)^2 + cdots = sum_{n=0}^{infty} frac{f^{(n)}(z_0)}{n!}(z-z_0)^n
end{equation}
is called the Taylor series for f around $z_0$.
end{definition}
begin{theorem}
If f is analytic inside and on the simple closed positively oriented contour $Gamma$ and if $z_0$ is any point inside $Gamma$, then
begin{equation}
f^{(n)}(z_0) = frac{n!}{2pi i} int_{Gamma} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta hspace{1cm} (n=1,2,3, cdots )
end{equation}
end{theorem}
hrulefill
begin{theorem}
If f is analytic in the disk $|z-z_0|<R'$, then the Taylor series $(1)$ converges to $f(z)$ for all $z$ in this disk.
end{theorem}
begin{proof}
Suppose that the function textit{f} is analytic in the disk $|z-z_0|<R'$. We can define a positively oriented contour $C$ as $$ C:=Big{z:|z-z_0|=frac{R + R'}{2}, 0<R< R' Big}.$$ Letting $zeta$ be an arbitrary point on $C$ and applying Theorem 1 to $(1)$, we get
begin{equation}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta.
end{equation}\
Or equivalently, we have that
begin{align*}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
&= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
\ &= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{frac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
\ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta
end{align*}
The above image is created using
begin{align*}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
&= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
\ &= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{frac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
\ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta
end{align*}
which is extracted from the full code above. How can I resize the second line of the image, so that all the characters are the same size?
resize
marked as duplicate by Community♦ Mar 31 at 6:00
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
add a comment |
This question already has an answer here:
equal size numerator and denominator
1 answer
Th following is the full code that produces the image shown below:
documentclass{article}
usepackage[utf8]{inputenc}
usepackage[english]{babel}
usepackage{amsthm}
usepackage{amsmath}
usepackage[left=1.5in, right=1.5in, top=0.5in]{geometry}
newtheorem{definition}{Definition}
newtheorem{theorem}{Theorem}
theoremstyle{remark}
begin{document}
title{Extra Credit}
maketitle
begin{definition}
If f is analytic at $z_0$, then the series
begin{equation}
f(z_0) + f'(z_0)(z-z_0) + frac{f''(z_0)}{2!}(z-z_0)^2 + cdots = sum_{n=0}^{infty} frac{f^{(n)}(z_0)}{n!}(z-z_0)^n
end{equation}
is called the Taylor series for f around $z_0$.
end{definition}
begin{theorem}
If f is analytic inside and on the simple closed positively oriented contour $Gamma$ and if $z_0$ is any point inside $Gamma$, then
begin{equation}
f^{(n)}(z_0) = frac{n!}{2pi i} int_{Gamma} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta hspace{1cm} (n=1,2,3, cdots )
end{equation}
end{theorem}
hrulefill
begin{theorem}
If f is analytic in the disk $|z-z_0|<R'$, then the Taylor series $(1)$ converges to $f(z)$ for all $z$ in this disk.
end{theorem}
begin{proof}
Suppose that the function textit{f} is analytic in the disk $|z-z_0|<R'$. We can define a positively oriented contour $C$ as $$ C:=Big{z:|z-z_0|=frac{R + R'}{2}, 0<R< R' Big}.$$ Letting $zeta$ be an arbitrary point on $C$ and applying Theorem 1 to $(1)$, we get
begin{equation}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta.
end{equation}\
Or equivalently, we have that
begin{align*}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
&= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
\ &= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{frac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
\ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta
end{align*}
The above image is created using
begin{align*}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
&= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
\ &= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{frac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
\ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta
end{align*}
which is extracted from the full code above. How can I resize the second line of the image, so that all the characters are the same size?
resize
marked as duplicate by Community♦ Mar 31 at 6:00
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
1
Usedisplaystyle
at the beginning of the outer denominator.
– L. F.
Mar 31 at 5:49
Some general typesetting issues: (a) Don't writetextif{f}
; do write$f$
. (b) Don't create paragraph breaks immediately beforebegin{equation}
,begin{align*}, etc. Don't use
cdots; instead, write
dots` and let LaTeX (and theamsmath
package) decide which kind of typographic ellipsis to insert. (d) Either insertnoindent
beforehrulefill
or, more simply, writehrule
.
– Mico
Mar 31 at 6:08
I was wondering why we insertnoindent
beforehrulefill
?
– K.M
Apr 1 at 3:12
add a comment |
This question already has an answer here:
equal size numerator and denominator
1 answer
Th following is the full code that produces the image shown below:
documentclass{article}
usepackage[utf8]{inputenc}
usepackage[english]{babel}
usepackage{amsthm}
usepackage{amsmath}
usepackage[left=1.5in, right=1.5in, top=0.5in]{geometry}
newtheorem{definition}{Definition}
newtheorem{theorem}{Theorem}
theoremstyle{remark}
begin{document}
title{Extra Credit}
maketitle
begin{definition}
If f is analytic at $z_0$, then the series
begin{equation}
f(z_0) + f'(z_0)(z-z_0) + frac{f''(z_0)}{2!}(z-z_0)^2 + cdots = sum_{n=0}^{infty} frac{f^{(n)}(z_0)}{n!}(z-z_0)^n
end{equation}
is called the Taylor series for f around $z_0$.
end{definition}
begin{theorem}
If f is analytic inside and on the simple closed positively oriented contour $Gamma$ and if $z_0$ is any point inside $Gamma$, then
begin{equation}
f^{(n)}(z_0) = frac{n!}{2pi i} int_{Gamma} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta hspace{1cm} (n=1,2,3, cdots )
end{equation}
end{theorem}
hrulefill
begin{theorem}
If f is analytic in the disk $|z-z_0|<R'$, then the Taylor series $(1)$ converges to $f(z)$ for all $z$ in this disk.
end{theorem}
begin{proof}
Suppose that the function textit{f} is analytic in the disk $|z-z_0|<R'$. We can define a positively oriented contour $C$ as $$ C:=Big{z:|z-z_0|=frac{R + R'}{2}, 0<R< R' Big}.$$ Letting $zeta$ be an arbitrary point on $C$ and applying Theorem 1 to $(1)$, we get
begin{equation}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta.
end{equation}\
Or equivalently, we have that
begin{align*}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
&= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
\ &= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{frac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
\ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta
end{align*}
The above image is created using
begin{align*}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
&= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
\ &= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{frac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
\ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta
end{align*}
which is extracted from the full code above. How can I resize the second line of the image, so that all the characters are the same size?
resize
This question already has an answer here:
equal size numerator and denominator
1 answer
Th following is the full code that produces the image shown below:
documentclass{article}
usepackage[utf8]{inputenc}
usepackage[english]{babel}
usepackage{amsthm}
usepackage{amsmath}
usepackage[left=1.5in, right=1.5in, top=0.5in]{geometry}
newtheorem{definition}{Definition}
newtheorem{theorem}{Theorem}
theoremstyle{remark}
begin{document}
title{Extra Credit}
maketitle
begin{definition}
If f is analytic at $z_0$, then the series
begin{equation}
f(z_0) + f'(z_0)(z-z_0) + frac{f''(z_0)}{2!}(z-z_0)^2 + cdots = sum_{n=0}^{infty} frac{f^{(n)}(z_0)}{n!}(z-z_0)^n
end{equation}
is called the Taylor series for f around $z_0$.
end{definition}
begin{theorem}
If f is analytic inside and on the simple closed positively oriented contour $Gamma$ and if $z_0$ is any point inside $Gamma$, then
begin{equation}
f^{(n)}(z_0) = frac{n!}{2pi i} int_{Gamma} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta hspace{1cm} (n=1,2,3, cdots )
end{equation}
end{theorem}
hrulefill
begin{theorem}
If f is analytic in the disk $|z-z_0|<R'$, then the Taylor series $(1)$ converges to $f(z)$ for all $z$ in this disk.
end{theorem}
begin{proof}
Suppose that the function textit{f} is analytic in the disk $|z-z_0|<R'$. We can define a positively oriented contour $C$ as $$ C:=Big{z:|z-z_0|=frac{R + R'}{2}, 0<R< R' Big}.$$ Letting $zeta$ be an arbitrary point on $C$ and applying Theorem 1 to $(1)$, we get
begin{equation}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta.
end{equation}\
Or equivalently, we have that
begin{align*}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
&= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
\ &= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{frac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
\ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta
end{align*}
The above image is created using
begin{align*}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
&= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
\ &= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{frac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
\ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta
end{align*}
which is extracted from the full code above. How can I resize the second line of the image, so that all the characters are the same size?
This question already has an answer here:
equal size numerator and denominator
1 answer
resize
resize
asked Mar 31 at 5:47
K.MK.M
1676
1676
marked as duplicate by Community♦ Mar 31 at 6:00
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
marked as duplicate by Community♦ Mar 31 at 6:00
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
1
Usedisplaystyle
at the beginning of the outer denominator.
– L. F.
Mar 31 at 5:49
Some general typesetting issues: (a) Don't writetextif{f}
; do write$f$
. (b) Don't create paragraph breaks immediately beforebegin{equation}
,begin{align*}, etc. Don't use
cdots; instead, write
dots` and let LaTeX (and theamsmath
package) decide which kind of typographic ellipsis to insert. (d) Either insertnoindent
beforehrulefill
or, more simply, writehrule
.
– Mico
Mar 31 at 6:08
I was wondering why we insertnoindent
beforehrulefill
?
– K.M
Apr 1 at 3:12
add a comment |
1
Usedisplaystyle
at the beginning of the outer denominator.
– L. F.
Mar 31 at 5:49
Some general typesetting issues: (a) Don't writetextif{f}
; do write$f$
. (b) Don't create paragraph breaks immediately beforebegin{equation}
,begin{align*}, etc. Don't use
cdots; instead, write
dots` and let LaTeX (and theamsmath
package) decide which kind of typographic ellipsis to insert. (d) Either insertnoindent
beforehrulefill
or, more simply, writehrule
.
– Mico
Mar 31 at 6:08
I was wondering why we insertnoindent
beforehrulefill
?
– K.M
Apr 1 at 3:12
1
1
Use
displaystyle
at the beginning of the outer denominator.– L. F.
Mar 31 at 5:49
Use
displaystyle
at the beginning of the outer denominator.– L. F.
Mar 31 at 5:49
Some general typesetting issues: (a) Don't write
textif{f}
; do write $f$
. (b) Don't create paragraph breaks immediately before begin{equation}
, begin{align*}, etc. Don't use
cdots; instead, write
dots` and let LaTeX (and the amsmath
package) decide which kind of typographic ellipsis to insert. (d) Either insert noindent
before hrulefill
or, more simply, write hrule
.– Mico
Mar 31 at 6:08
Some general typesetting issues: (a) Don't write
textif{f}
; do write $f$
. (b) Don't create paragraph breaks immediately before begin{equation}
, begin{align*}, etc. Don't use
cdots; instead, write
dots` and let LaTeX (and the amsmath
package) decide which kind of typographic ellipsis to insert. (d) Either insert noindent
before hrulefill
or, more simply, write hrule
.– Mico
Mar 31 at 6:08
I was wondering why we insert
noindent
before hrulefill
?– K.M
Apr 1 at 3:12
I was wondering why we insert
noindent
before hrulefill
?– K.M
Apr 1 at 3:12
add a comment |
1 Answer
1
active
oldest
votes
You want to
begin{align*}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
&= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
\
&= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{displaystylefrac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
\ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta
end{align*}
or simply dfrac
as you can use amsmath
package.
Please observe also that one backslash before end{align*}
was removed.
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
You want to
begin{align*}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
&= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
\
&= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{displaystylefrac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
\ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta
end{align*}
or simply dfrac
as you can use amsmath
package.
Please observe also that one backslash before end{align*}
was removed.
add a comment |
You want to
begin{align*}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
&= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
\
&= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{displaystylefrac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
\ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta
end{align*}
or simply dfrac
as you can use amsmath
package.
Please observe also that one backslash before end{align*}
was removed.
add a comment |
You want to
begin{align*}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
&= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
\
&= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{displaystylefrac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
\ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta
end{align*}
or simply dfrac
as you can use amsmath
package.
Please observe also that one backslash before end{align*}
was removed.
You want to
begin{align*}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
&= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
\
&= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{displaystylefrac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
\ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta
end{align*}
or simply dfrac
as you can use amsmath
package.
Please observe also that one backslash before end{align*}
was removed.
edited Mar 31 at 6:10
answered Mar 31 at 5:50
Przemysław ScherwentkePrzemysław Scherwentke
30k54796
30k54796
add a comment |
add a comment |
1
Use
displaystyle
at the beginning of the outer denominator.– L. F.
Mar 31 at 5:49
Some general typesetting issues: (a) Don't write
textif{f}
; do write$f$
. (b) Don't create paragraph breaks immediately beforebegin{equation}
,begin{align*}, etc. Don't use
cdots; instead, write
dots` and let LaTeX (and theamsmath
package) decide which kind of typographic ellipsis to insert. (d) Either insertnoindent
beforehrulefill
or, more simply, writehrule
.– Mico
Mar 31 at 6:08
I was wondering why we insert
noindent
beforehrulefill
?– K.M
Apr 1 at 3:12