How do I make the characters have the same size? [duplicate]












1
















This question already has an answer here:




  • equal size numerator and denominator

    1 answer




Th following is the full code that produces the image shown below:



documentclass{article}
usepackage[utf8]{inputenc}
usepackage[english]{babel}

usepackage{amsthm}
usepackage{amsmath}
usepackage[left=1.5in, right=1.5in, top=0.5in]{geometry}


newtheorem{definition}{Definition}
newtheorem{theorem}{Theorem}
theoremstyle{remark}

begin{document}
title{Extra Credit}
maketitle

begin{definition}
If f is analytic at $z_0$, then the series

begin{equation}
f(z_0) + f'(z_0)(z-z_0) + frac{f''(z_0)}{2!}(z-z_0)^2 + cdots = sum_{n=0}^{infty} frac{f^{(n)}(z_0)}{n!}(z-z_0)^n
end{equation}

is called the Taylor series for f around $z_0$.
end{definition}

begin{theorem}
If f is analytic inside and on the simple closed positively oriented contour $Gamma$ and if $z_0$ is any point inside $Gamma$, then
begin{equation}
f^{(n)}(z_0) = frac{n!}{2pi i} int_{Gamma} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta hspace{1cm} (n=1,2,3, cdots )
end{equation}
end{theorem}
hrulefill



begin{theorem}
If f is analytic in the disk $|z-z_0|<R'$, then the Taylor series $(1)$ converges to $f(z)$ for all $z$ in this disk.
end{theorem}

begin{proof}
Suppose that the function textit{f} is analytic in the disk $|z-z_0|<R'$. We can define a positively oriented contour $C$ as $$ C:=Big{z:|z-z_0|=frac{R + R'}{2}, 0<R< R' Big}.$$ Letting $zeta$ be an arbitrary point on $C$ and applying Theorem 1 to $(1)$, we get

begin{equation}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta.
end{equation}\

Or equivalently, we have that


begin{align*}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
&= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
\ &= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{frac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
\ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta

end{align*}


enter image description here



The above image is created using



begin{align*}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
&= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
\ &= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{frac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
\ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta

end{align*}


which is extracted from the full code above. How can I resize the second line of the image, so that all the characters are the same size?










share|improve this question













marked as duplicate by Community Mar 31 at 6:00


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.














  • 1





    Use displaystyle at the beginning of the outer denominator.

    – L. F.
    Mar 31 at 5:49











  • Some general typesetting issues: (a) Don't write textif{f}; do write $f$. (b) Don't create paragraph breaks immediately before begin{equation}, begin{align*}, etc. Don't use cdots; instead, write dots` and let LaTeX (and the amsmath package) decide which kind of typographic ellipsis to insert. (d) Either insert noindent before hrulefill or, more simply, write hrule.

    – Mico
    Mar 31 at 6:08













  • I was wondering why we insert noindent before hrulefill?

    – K.M
    Apr 1 at 3:12
















1
















This question already has an answer here:




  • equal size numerator and denominator

    1 answer




Th following is the full code that produces the image shown below:



documentclass{article}
usepackage[utf8]{inputenc}
usepackage[english]{babel}

usepackage{amsthm}
usepackage{amsmath}
usepackage[left=1.5in, right=1.5in, top=0.5in]{geometry}


newtheorem{definition}{Definition}
newtheorem{theorem}{Theorem}
theoremstyle{remark}

begin{document}
title{Extra Credit}
maketitle

begin{definition}
If f is analytic at $z_0$, then the series

begin{equation}
f(z_0) + f'(z_0)(z-z_0) + frac{f''(z_0)}{2!}(z-z_0)^2 + cdots = sum_{n=0}^{infty} frac{f^{(n)}(z_0)}{n!}(z-z_0)^n
end{equation}

is called the Taylor series for f around $z_0$.
end{definition}

begin{theorem}
If f is analytic inside and on the simple closed positively oriented contour $Gamma$ and if $z_0$ is any point inside $Gamma$, then
begin{equation}
f^{(n)}(z_0) = frac{n!}{2pi i} int_{Gamma} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta hspace{1cm} (n=1,2,3, cdots )
end{equation}
end{theorem}
hrulefill



begin{theorem}
If f is analytic in the disk $|z-z_0|<R'$, then the Taylor series $(1)$ converges to $f(z)$ for all $z$ in this disk.
end{theorem}

begin{proof}
Suppose that the function textit{f} is analytic in the disk $|z-z_0|<R'$. We can define a positively oriented contour $C$ as $$ C:=Big{z:|z-z_0|=frac{R + R'}{2}, 0<R< R' Big}.$$ Letting $zeta$ be an arbitrary point on $C$ and applying Theorem 1 to $(1)$, we get

begin{equation}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta.
end{equation}\

Or equivalently, we have that


begin{align*}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
&= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
\ &= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{frac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
\ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta

end{align*}


enter image description here



The above image is created using



begin{align*}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
&= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
\ &= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{frac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
\ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta

end{align*}


which is extracted from the full code above. How can I resize the second line of the image, so that all the characters are the same size?










share|improve this question













marked as duplicate by Community Mar 31 at 6:00


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.














  • 1





    Use displaystyle at the beginning of the outer denominator.

    – L. F.
    Mar 31 at 5:49











  • Some general typesetting issues: (a) Don't write textif{f}; do write $f$. (b) Don't create paragraph breaks immediately before begin{equation}, begin{align*}, etc. Don't use cdots; instead, write dots` and let LaTeX (and the amsmath package) decide which kind of typographic ellipsis to insert. (d) Either insert noindent before hrulefill or, more simply, write hrule.

    – Mico
    Mar 31 at 6:08













  • I was wondering why we insert noindent before hrulefill?

    – K.M
    Apr 1 at 3:12














1












1








1









This question already has an answer here:




  • equal size numerator and denominator

    1 answer




Th following is the full code that produces the image shown below:



documentclass{article}
usepackage[utf8]{inputenc}
usepackage[english]{babel}

usepackage{amsthm}
usepackage{amsmath}
usepackage[left=1.5in, right=1.5in, top=0.5in]{geometry}


newtheorem{definition}{Definition}
newtheorem{theorem}{Theorem}
theoremstyle{remark}

begin{document}
title{Extra Credit}
maketitle

begin{definition}
If f is analytic at $z_0$, then the series

begin{equation}
f(z_0) + f'(z_0)(z-z_0) + frac{f''(z_0)}{2!}(z-z_0)^2 + cdots = sum_{n=0}^{infty} frac{f^{(n)}(z_0)}{n!}(z-z_0)^n
end{equation}

is called the Taylor series for f around $z_0$.
end{definition}

begin{theorem}
If f is analytic inside and on the simple closed positively oriented contour $Gamma$ and if $z_0$ is any point inside $Gamma$, then
begin{equation}
f^{(n)}(z_0) = frac{n!}{2pi i} int_{Gamma} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta hspace{1cm} (n=1,2,3, cdots )
end{equation}
end{theorem}
hrulefill



begin{theorem}
If f is analytic in the disk $|z-z_0|<R'$, then the Taylor series $(1)$ converges to $f(z)$ for all $z$ in this disk.
end{theorem}

begin{proof}
Suppose that the function textit{f} is analytic in the disk $|z-z_0|<R'$. We can define a positively oriented contour $C$ as $$ C:=Big{z:|z-z_0|=frac{R + R'}{2}, 0<R< R' Big}.$$ Letting $zeta$ be an arbitrary point on $C$ and applying Theorem 1 to $(1)$, we get

begin{equation}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta.
end{equation}\

Or equivalently, we have that


begin{align*}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
&= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
\ &= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{frac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
\ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta

end{align*}


enter image description here



The above image is created using



begin{align*}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
&= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
\ &= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{frac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
\ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta

end{align*}


which is extracted from the full code above. How can I resize the second line of the image, so that all the characters are the same size?










share|improve this question















This question already has an answer here:




  • equal size numerator and denominator

    1 answer




Th following is the full code that produces the image shown below:



documentclass{article}
usepackage[utf8]{inputenc}
usepackage[english]{babel}

usepackage{amsthm}
usepackage{amsmath}
usepackage[left=1.5in, right=1.5in, top=0.5in]{geometry}


newtheorem{definition}{Definition}
newtheorem{theorem}{Theorem}
theoremstyle{remark}

begin{document}
title{Extra Credit}
maketitle

begin{definition}
If f is analytic at $z_0$, then the series

begin{equation}
f(z_0) + f'(z_0)(z-z_0) + frac{f''(z_0)}{2!}(z-z_0)^2 + cdots = sum_{n=0}^{infty} frac{f^{(n)}(z_0)}{n!}(z-z_0)^n
end{equation}

is called the Taylor series for f around $z_0$.
end{definition}

begin{theorem}
If f is analytic inside and on the simple closed positively oriented contour $Gamma$ and if $z_0$ is any point inside $Gamma$, then
begin{equation}
f^{(n)}(z_0) = frac{n!}{2pi i} int_{Gamma} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta hspace{1cm} (n=1,2,3, cdots )
end{equation}
end{theorem}
hrulefill



begin{theorem}
If f is analytic in the disk $|z-z_0|<R'$, then the Taylor series $(1)$ converges to $f(z)$ for all $z$ in this disk.
end{theorem}

begin{proof}
Suppose that the function textit{f} is analytic in the disk $|z-z_0|<R'$. We can define a positively oriented contour $C$ as $$ C:=Big{z:|z-z_0|=frac{R + R'}{2}, 0<R< R' Big}.$$ Letting $zeta$ be an arbitrary point on $C$ and applying Theorem 1 to $(1)$, we get

begin{equation}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta.
end{equation}\

Or equivalently, we have that


begin{align*}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
&= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
\ &= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{frac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
\ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta

end{align*}


enter image description here



The above image is created using



begin{align*}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
&= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
\ &= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{frac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
\ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta

end{align*}


which is extracted from the full code above. How can I resize the second line of the image, so that all the characters are the same size?





This question already has an answer here:




  • equal size numerator and denominator

    1 answer








resize






share|improve this question













share|improve this question











share|improve this question




share|improve this question










asked Mar 31 at 5:47









K.MK.M

1676




1676




marked as duplicate by Community Mar 31 at 6:00


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.









marked as duplicate by Community Mar 31 at 6:00


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.










  • 1





    Use displaystyle at the beginning of the outer denominator.

    – L. F.
    Mar 31 at 5:49











  • Some general typesetting issues: (a) Don't write textif{f}; do write $f$. (b) Don't create paragraph breaks immediately before begin{equation}, begin{align*}, etc. Don't use cdots; instead, write dots` and let LaTeX (and the amsmath package) decide which kind of typographic ellipsis to insert. (d) Either insert noindent before hrulefill or, more simply, write hrule.

    – Mico
    Mar 31 at 6:08













  • I was wondering why we insert noindent before hrulefill?

    – K.M
    Apr 1 at 3:12














  • 1





    Use displaystyle at the beginning of the outer denominator.

    – L. F.
    Mar 31 at 5:49











  • Some general typesetting issues: (a) Don't write textif{f}; do write $f$. (b) Don't create paragraph breaks immediately before begin{equation}, begin{align*}, etc. Don't use cdots; instead, write dots` and let LaTeX (and the amsmath package) decide which kind of typographic ellipsis to insert. (d) Either insert noindent before hrulefill or, more simply, write hrule.

    – Mico
    Mar 31 at 6:08













  • I was wondering why we insert noindent before hrulefill?

    – K.M
    Apr 1 at 3:12








1




1





Use displaystyle at the beginning of the outer denominator.

– L. F.
Mar 31 at 5:49





Use displaystyle at the beginning of the outer denominator.

– L. F.
Mar 31 at 5:49













Some general typesetting issues: (a) Don't write textif{f}; do write $f$. (b) Don't create paragraph breaks immediately before begin{equation}, begin{align*}, etc. Don't use cdots; instead, write dots` and let LaTeX (and the amsmath package) decide which kind of typographic ellipsis to insert. (d) Either insert noindent before hrulefill or, more simply, write hrule.

– Mico
Mar 31 at 6:08







Some general typesetting issues: (a) Don't write textif{f}; do write $f$. (b) Don't create paragraph breaks immediately before begin{equation}, begin{align*}, etc. Don't use cdots; instead, write dots` and let LaTeX (and the amsmath package) decide which kind of typographic ellipsis to insert. (d) Either insert noindent before hrulefill or, more simply, write hrule.

– Mico
Mar 31 at 6:08















I was wondering why we insert noindent before hrulefill?

– K.M
Apr 1 at 3:12





I was wondering why we insert noindent before hrulefill?

– K.M
Apr 1 at 3:12










1 Answer
1






active

oldest

votes


















2














You want to



begin{align*}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
&= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
\
&= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{displaystylefrac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
\ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta
end{align*}


or simply dfrac as you can use amsmath package.



enter image description here



Please observe also that one backslash before end{align*} was removed.






share|improve this answer
































    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2














    You want to



    begin{align*}
    sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
    &= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
    \
    &= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{displaystylefrac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
    \ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta
    end{align*}


    or simply dfrac as you can use amsmath package.



    enter image description here



    Please observe also that one backslash before end{align*} was removed.






    share|improve this answer






























      2














      You want to



      begin{align*}
      sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
      &= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
      \
      &= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{displaystylefrac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
      \ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta
      end{align*}


      or simply dfrac as you can use amsmath package.



      enter image description here



      Please observe also that one backslash before end{align*} was removed.






      share|improve this answer




























        2












        2








        2







        You want to



        begin{align*}
        sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
        &= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
        \
        &= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{displaystylefrac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
        \ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta
        end{align*}


        or simply dfrac as you can use amsmath package.



        enter image description here



        Please observe also that one backslash before end{align*} was removed.






        share|improve this answer















        You want to



        begin{align*}
        sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
        &= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
        \
        &= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{displaystylefrac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
        \ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta
        end{align*}


        or simply dfrac as you can use amsmath package.



        enter image description here



        Please observe also that one backslash before end{align*} was removed.







        share|improve this answer














        share|improve this answer



        share|improve this answer








        edited Mar 31 at 6:10

























        answered Mar 31 at 5:50









        Przemysław ScherwentkePrzemysław Scherwentke

        30k54796




        30k54796















            Popular posts from this blog

            How to change which sound is reproduced for terminal bell?

            Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents

            Can I use Tabulator js library in my java Spring + Thymeleaf project?