How do I make the characters have the same size? [duplicate]












1
















This question already has an answer here:




  • equal size numerator and denominator

    1 answer




Th following is the full code that produces the image shown below:



documentclass{article}
usepackage[utf8]{inputenc}
usepackage[english]{babel}

usepackage{amsthm}
usepackage{amsmath}
usepackage[left=1.5in, right=1.5in, top=0.5in]{geometry}


newtheorem{definition}{Definition}
newtheorem{theorem}{Theorem}
theoremstyle{remark}

begin{document}
title{Extra Credit}
maketitle

begin{definition}
If f is analytic at $z_0$, then the series

begin{equation}
f(z_0) + f'(z_0)(z-z_0) + frac{f''(z_0)}{2!}(z-z_0)^2 + cdots = sum_{n=0}^{infty} frac{f^{(n)}(z_0)}{n!}(z-z_0)^n
end{equation}

is called the Taylor series for f around $z_0$.
end{definition}

begin{theorem}
If f is analytic inside and on the simple closed positively oriented contour $Gamma$ and if $z_0$ is any point inside $Gamma$, then
begin{equation}
f^{(n)}(z_0) = frac{n!}{2pi i} int_{Gamma} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta hspace{1cm} (n=1,2,3, cdots )
end{equation}
end{theorem}
hrulefill



begin{theorem}
If f is analytic in the disk $|z-z_0|<R'$, then the Taylor series $(1)$ converges to $f(z)$ for all $z$ in this disk.
end{theorem}

begin{proof}
Suppose that the function textit{f} is analytic in the disk $|z-z_0|<R'$. We can define a positively oriented contour $C$ as $$ C:=Big{z:|z-z_0|=frac{R + R'}{2}, 0<R< R' Big}.$$ Letting $zeta$ be an arbitrary point on $C$ and applying Theorem 1 to $(1)$, we get

begin{equation}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta.
end{equation}\

Or equivalently, we have that


begin{align*}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
&= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
\ &= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{frac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
\ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta

end{align*}


enter image description here



The above image is created using



begin{align*}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
&= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
\ &= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{frac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
\ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta

end{align*}


which is extracted from the full code above. How can I resize the second line of the image, so that all the characters are the same size?










share|improve this question













marked as duplicate by Community Mar 31 at 6:00


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.














  • 1





    Use displaystyle at the beginning of the outer denominator.

    – L. F.
    Mar 31 at 5:49











  • Some general typesetting issues: (a) Don't write textif{f}; do write $f$. (b) Don't create paragraph breaks immediately before begin{equation}, begin{align*}, etc. Don't use cdots; instead, write dots` and let LaTeX (and the amsmath package) decide which kind of typographic ellipsis to insert. (d) Either insert noindent before hrulefill or, more simply, write hrule.

    – Mico
    Mar 31 at 6:08













  • I was wondering why we insert noindent before hrulefill?

    – K.M
    Apr 1 at 3:12
















1
















This question already has an answer here:




  • equal size numerator and denominator

    1 answer




Th following is the full code that produces the image shown below:



documentclass{article}
usepackage[utf8]{inputenc}
usepackage[english]{babel}

usepackage{amsthm}
usepackage{amsmath}
usepackage[left=1.5in, right=1.5in, top=0.5in]{geometry}


newtheorem{definition}{Definition}
newtheorem{theorem}{Theorem}
theoremstyle{remark}

begin{document}
title{Extra Credit}
maketitle

begin{definition}
If f is analytic at $z_0$, then the series

begin{equation}
f(z_0) + f'(z_0)(z-z_0) + frac{f''(z_0)}{2!}(z-z_0)^2 + cdots = sum_{n=0}^{infty} frac{f^{(n)}(z_0)}{n!}(z-z_0)^n
end{equation}

is called the Taylor series for f around $z_0$.
end{definition}

begin{theorem}
If f is analytic inside and on the simple closed positively oriented contour $Gamma$ and if $z_0$ is any point inside $Gamma$, then
begin{equation}
f^{(n)}(z_0) = frac{n!}{2pi i} int_{Gamma} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta hspace{1cm} (n=1,2,3, cdots )
end{equation}
end{theorem}
hrulefill



begin{theorem}
If f is analytic in the disk $|z-z_0|<R'$, then the Taylor series $(1)$ converges to $f(z)$ for all $z$ in this disk.
end{theorem}

begin{proof}
Suppose that the function textit{f} is analytic in the disk $|z-z_0|<R'$. We can define a positively oriented contour $C$ as $$ C:=Big{z:|z-z_0|=frac{R + R'}{2}, 0<R< R' Big}.$$ Letting $zeta$ be an arbitrary point on $C$ and applying Theorem 1 to $(1)$, we get

begin{equation}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta.
end{equation}\

Or equivalently, we have that


begin{align*}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
&= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
\ &= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{frac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
\ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta

end{align*}


enter image description here



The above image is created using



begin{align*}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
&= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
\ &= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{frac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
\ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta

end{align*}


which is extracted from the full code above. How can I resize the second line of the image, so that all the characters are the same size?










share|improve this question













marked as duplicate by Community Mar 31 at 6:00


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.














  • 1





    Use displaystyle at the beginning of the outer denominator.

    – L. F.
    Mar 31 at 5:49











  • Some general typesetting issues: (a) Don't write textif{f}; do write $f$. (b) Don't create paragraph breaks immediately before begin{equation}, begin{align*}, etc. Don't use cdots; instead, write dots` and let LaTeX (and the amsmath package) decide which kind of typographic ellipsis to insert. (d) Either insert noindent before hrulefill or, more simply, write hrule.

    – Mico
    Mar 31 at 6:08













  • I was wondering why we insert noindent before hrulefill?

    – K.M
    Apr 1 at 3:12














1












1








1









This question already has an answer here:




  • equal size numerator and denominator

    1 answer




Th following is the full code that produces the image shown below:



documentclass{article}
usepackage[utf8]{inputenc}
usepackage[english]{babel}

usepackage{amsthm}
usepackage{amsmath}
usepackage[left=1.5in, right=1.5in, top=0.5in]{geometry}


newtheorem{definition}{Definition}
newtheorem{theorem}{Theorem}
theoremstyle{remark}

begin{document}
title{Extra Credit}
maketitle

begin{definition}
If f is analytic at $z_0$, then the series

begin{equation}
f(z_0) + f'(z_0)(z-z_0) + frac{f''(z_0)}{2!}(z-z_0)^2 + cdots = sum_{n=0}^{infty} frac{f^{(n)}(z_0)}{n!}(z-z_0)^n
end{equation}

is called the Taylor series for f around $z_0$.
end{definition}

begin{theorem}
If f is analytic inside and on the simple closed positively oriented contour $Gamma$ and if $z_0$ is any point inside $Gamma$, then
begin{equation}
f^{(n)}(z_0) = frac{n!}{2pi i} int_{Gamma} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta hspace{1cm} (n=1,2,3, cdots )
end{equation}
end{theorem}
hrulefill



begin{theorem}
If f is analytic in the disk $|z-z_0|<R'$, then the Taylor series $(1)$ converges to $f(z)$ for all $z$ in this disk.
end{theorem}

begin{proof}
Suppose that the function textit{f} is analytic in the disk $|z-z_0|<R'$. We can define a positively oriented contour $C$ as $$ C:=Big{z:|z-z_0|=frac{R + R'}{2}, 0<R< R' Big}.$$ Letting $zeta$ be an arbitrary point on $C$ and applying Theorem 1 to $(1)$, we get

begin{equation}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta.
end{equation}\

Or equivalently, we have that


begin{align*}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
&= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
\ &= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{frac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
\ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta

end{align*}


enter image description here



The above image is created using



begin{align*}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
&= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
\ &= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{frac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
\ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta

end{align*}


which is extracted from the full code above. How can I resize the second line of the image, so that all the characters are the same size?










share|improve this question















This question already has an answer here:




  • equal size numerator and denominator

    1 answer




Th following is the full code that produces the image shown below:



documentclass{article}
usepackage[utf8]{inputenc}
usepackage[english]{babel}

usepackage{amsthm}
usepackage{amsmath}
usepackage[left=1.5in, right=1.5in, top=0.5in]{geometry}


newtheorem{definition}{Definition}
newtheorem{theorem}{Theorem}
theoremstyle{remark}

begin{document}
title{Extra Credit}
maketitle

begin{definition}
If f is analytic at $z_0$, then the series

begin{equation}
f(z_0) + f'(z_0)(z-z_0) + frac{f''(z_0)}{2!}(z-z_0)^2 + cdots = sum_{n=0}^{infty} frac{f^{(n)}(z_0)}{n!}(z-z_0)^n
end{equation}

is called the Taylor series for f around $z_0$.
end{definition}

begin{theorem}
If f is analytic inside and on the simple closed positively oriented contour $Gamma$ and if $z_0$ is any point inside $Gamma$, then
begin{equation}
f^{(n)}(z_0) = frac{n!}{2pi i} int_{Gamma} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta hspace{1cm} (n=1,2,3, cdots )
end{equation}
end{theorem}
hrulefill



begin{theorem}
If f is analytic in the disk $|z-z_0|<R'$, then the Taylor series $(1)$ converges to $f(z)$ for all $z$ in this disk.
end{theorem}

begin{proof}
Suppose that the function textit{f} is analytic in the disk $|z-z_0|<R'$. We can define a positively oriented contour $C$ as $$ C:=Big{z:|z-z_0|=frac{R + R'}{2}, 0<R< R' Big}.$$ Letting $zeta$ be an arbitrary point on $C$ and applying Theorem 1 to $(1)$, we get

begin{equation}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta.
end{equation}\

Or equivalently, we have that


begin{align*}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
&= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
\ &= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{frac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
\ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta

end{align*}


enter image description here



The above image is created using



begin{align*}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
&= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
\ &= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{frac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
\ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta

end{align*}


which is extracted from the full code above. How can I resize the second line of the image, so that all the characters are the same size?





This question already has an answer here:




  • equal size numerator and denominator

    1 answer








resize






share|improve this question













share|improve this question











share|improve this question




share|improve this question










asked Mar 31 at 5:47









K.MK.M

1676




1676




marked as duplicate by Community Mar 31 at 6:00


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.









marked as duplicate by Community Mar 31 at 6:00


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.










  • 1





    Use displaystyle at the beginning of the outer denominator.

    – L. F.
    Mar 31 at 5:49











  • Some general typesetting issues: (a) Don't write textif{f}; do write $f$. (b) Don't create paragraph breaks immediately before begin{equation}, begin{align*}, etc. Don't use cdots; instead, write dots` and let LaTeX (and the amsmath package) decide which kind of typographic ellipsis to insert. (d) Either insert noindent before hrulefill or, more simply, write hrule.

    – Mico
    Mar 31 at 6:08













  • I was wondering why we insert noindent before hrulefill?

    – K.M
    Apr 1 at 3:12














  • 1





    Use displaystyle at the beginning of the outer denominator.

    – L. F.
    Mar 31 at 5:49











  • Some general typesetting issues: (a) Don't write textif{f}; do write $f$. (b) Don't create paragraph breaks immediately before begin{equation}, begin{align*}, etc. Don't use cdots; instead, write dots` and let LaTeX (and the amsmath package) decide which kind of typographic ellipsis to insert. (d) Either insert noindent before hrulefill or, more simply, write hrule.

    – Mico
    Mar 31 at 6:08













  • I was wondering why we insert noindent before hrulefill?

    – K.M
    Apr 1 at 3:12








1




1





Use displaystyle at the beginning of the outer denominator.

– L. F.
Mar 31 at 5:49





Use displaystyle at the beginning of the outer denominator.

– L. F.
Mar 31 at 5:49













Some general typesetting issues: (a) Don't write textif{f}; do write $f$. (b) Don't create paragraph breaks immediately before begin{equation}, begin{align*}, etc. Don't use cdots; instead, write dots` and let LaTeX (and the amsmath package) decide which kind of typographic ellipsis to insert. (d) Either insert noindent before hrulefill or, more simply, write hrule.

– Mico
Mar 31 at 6:08







Some general typesetting issues: (a) Don't write textif{f}; do write $f$. (b) Don't create paragraph breaks immediately before begin{equation}, begin{align*}, etc. Don't use cdots; instead, write dots` and let LaTeX (and the amsmath package) decide which kind of typographic ellipsis to insert. (d) Either insert noindent before hrulefill or, more simply, write hrule.

– Mico
Mar 31 at 6:08















I was wondering why we insert noindent before hrulefill?

– K.M
Apr 1 at 3:12





I was wondering why we insert noindent before hrulefill?

– K.M
Apr 1 at 3:12










1 Answer
1






active

oldest

votes


















2














You want to



begin{align*}
sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
&= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
\
&= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{displaystylefrac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
\ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta
end{align*}


or simply dfrac as you can use amsmath package.



enter image description here



Please observe also that one backslash before end{align*} was removed.






share|improve this answer
































    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2














    You want to



    begin{align*}
    sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
    &= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
    \
    &= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{displaystylefrac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
    \ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta
    end{align*}


    or simply dfrac as you can use amsmath package.



    enter image description here



    Please observe also that one backslash before end{align*} was removed.






    share|improve this answer






























      2














      You want to



      begin{align*}
      sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
      &= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
      \
      &= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{displaystylefrac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
      \ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta
      end{align*}


      or simply dfrac as you can use amsmath package.



      enter image description here



      Please observe also that one backslash before end{align*} was removed.






      share|improve this answer




























        2












        2








        2







        You want to



        begin{align*}
        sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
        &= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
        \
        &= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{displaystylefrac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
        \ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta
        end{align*}


        or simply dfrac as you can use amsmath package.



        enter image description here



        Please observe also that one backslash before end{align*} was removed.






        share|improve this answer















        You want to



        begin{align*}
        sum_{n=0}^{infty} frac{(z-z_0)^{n}}{2pi i} int_{C} frac{f(zeta)}{(zeta - z_0)^{n+1}}dzeta
        &= frac{1}{2pi i} sum_{n=0}^{infty} int_{C} frac{(z-z_0)^{n}f(zeta)}{(zeta - z_0)^{n+1}}dzeta
        \
        &= frac{1}{2pi i}int_{C}sum_{n=0}^{infty} frac{1}{zeta - z_0}frac{f(zeta)}{displaystylefrac{(zeta - z_0)^n}{(z-z_0)^n}}dzeta
        \ &= frac{1}{2pi i} int_{C} frac{f(zeta)}{zeta - z_0}sum_{n=0}^{infty}left( frac{z-z_0}{zeta - z_0}right)^{n} dzeta
        end{align*}


        or simply dfrac as you can use amsmath package.



        enter image description here



        Please observe also that one backslash before end{align*} was removed.







        share|improve this answer














        share|improve this answer



        share|improve this answer








        edited Mar 31 at 6:10

























        answered Mar 31 at 5:50









        Przemysław ScherwentkePrzemysław Scherwentke

        30k54796




        30k54796















            Popular posts from this blog

            How to change which sound is reproduced for terminal bell?

            Can I use Tabulator js library in my java Spring + Thymeleaf project?

            Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents