Surjective module homomorphism? $0$ module homomorphism?












2












$begingroup$


I am trying to resolve an exercise and there are 2 point that are missing in order to finalize:



Suppose $A$, $B$, $C$, and $P$ are $R$-modules, and $f:A rightarrow B$ and $g:Brightarrow C$ are both $R$-module morphisms.



1) $forall phi : C rightarrow P$ morphism, if $phi circ g = 0 Rightarrow phi = 0$, for a morphism $phi : C rightarrow P$, does this imply that $g$ is surjective? Why?



2) If $phi circ g circ f = 0$ $ forall phi : C rightarrow P$ morphism does this mean that $g circ f = 0$? Why?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    In the first point, should the implication hold for some morphism $phi$ or for all morphisms $phi$? And is $P$ some fixed $R$-module, or should the implication hold for all $R$-modules $P$?
    $endgroup$
    – Servaes
    Dec 5 '18 at 19:30












  • $begingroup$
    for all! I will edit, thanks
    $endgroup$
    – roi_saumon
    Dec 5 '18 at 19:31


















2












$begingroup$


I am trying to resolve an exercise and there are 2 point that are missing in order to finalize:



Suppose $A$, $B$, $C$, and $P$ are $R$-modules, and $f:A rightarrow B$ and $g:Brightarrow C$ are both $R$-module morphisms.



1) $forall phi : C rightarrow P$ morphism, if $phi circ g = 0 Rightarrow phi = 0$, for a morphism $phi : C rightarrow P$, does this imply that $g$ is surjective? Why?



2) If $phi circ g circ f = 0$ $ forall phi : C rightarrow P$ morphism does this mean that $g circ f = 0$? Why?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    In the first point, should the implication hold for some morphism $phi$ or for all morphisms $phi$? And is $P$ some fixed $R$-module, or should the implication hold for all $R$-modules $P$?
    $endgroup$
    – Servaes
    Dec 5 '18 at 19:30












  • $begingroup$
    for all! I will edit, thanks
    $endgroup$
    – roi_saumon
    Dec 5 '18 at 19:31
















2












2








2





$begingroup$


I am trying to resolve an exercise and there are 2 point that are missing in order to finalize:



Suppose $A$, $B$, $C$, and $P$ are $R$-modules, and $f:A rightarrow B$ and $g:Brightarrow C$ are both $R$-module morphisms.



1) $forall phi : C rightarrow P$ morphism, if $phi circ g = 0 Rightarrow phi = 0$, for a morphism $phi : C rightarrow P$, does this imply that $g$ is surjective? Why?



2) If $phi circ g circ f = 0$ $ forall phi : C rightarrow P$ morphism does this mean that $g circ f = 0$? Why?










share|cite|improve this question











$endgroup$




I am trying to resolve an exercise and there are 2 point that are missing in order to finalize:



Suppose $A$, $B$, $C$, and $P$ are $R$-modules, and $f:A rightarrow B$ and $g:Brightarrow C$ are both $R$-module morphisms.



1) $forall phi : C rightarrow P$ morphism, if $phi circ g = 0 Rightarrow phi = 0$, for a morphism $phi : C rightarrow P$, does this imply that $g$ is surjective? Why?



2) If $phi circ g circ f = 0$ $ forall phi : C rightarrow P$ morphism does this mean that $g circ f = 0$? Why?







modules






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 5 '18 at 19:35









zipirovich

11.3k11731




11.3k11731










asked Dec 5 '18 at 19:21









roi_saumonroi_saumon

57238




57238








  • 1




    $begingroup$
    In the first point, should the implication hold for some morphism $phi$ or for all morphisms $phi$? And is $P$ some fixed $R$-module, or should the implication hold for all $R$-modules $P$?
    $endgroup$
    – Servaes
    Dec 5 '18 at 19:30












  • $begingroup$
    for all! I will edit, thanks
    $endgroup$
    – roi_saumon
    Dec 5 '18 at 19:31
















  • 1




    $begingroup$
    In the first point, should the implication hold for some morphism $phi$ or for all morphisms $phi$? And is $P$ some fixed $R$-module, or should the implication hold for all $R$-modules $P$?
    $endgroup$
    – Servaes
    Dec 5 '18 at 19:30












  • $begingroup$
    for all! I will edit, thanks
    $endgroup$
    – roi_saumon
    Dec 5 '18 at 19:31










1




1




$begingroup$
In the first point, should the implication hold for some morphism $phi$ or for all morphisms $phi$? And is $P$ some fixed $R$-module, or should the implication hold for all $R$-modules $P$?
$endgroup$
– Servaes
Dec 5 '18 at 19:30






$begingroup$
In the first point, should the implication hold for some morphism $phi$ or for all morphisms $phi$? And is $P$ some fixed $R$-module, or should the implication hold for all $R$-modules $P$?
$endgroup$
– Servaes
Dec 5 '18 at 19:30














$begingroup$
for all! I will edit, thanks
$endgroup$
– roi_saumon
Dec 5 '18 at 19:31






$begingroup$
for all! I will edit, thanks
$endgroup$
– roi_saumon
Dec 5 '18 at 19:31












2 Answers
2






active

oldest

votes


















1












$begingroup$

For the first point consider for $phi$ the quotient morphism $pi: C longrightarrow operatorname{coker}g$.



For the second point consider for $phi$ the identity morphism $operatorname{id}: C longrightarrow C$.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Oh, so nice! Especially the one with the cokernel. How did you think about that? Is it a standard trick?
    $endgroup$
    – roi_saumon
    Dec 5 '18 at 21:27










  • $begingroup$
    Well if $phicirc g=0$ then $operatorname{im}gsubsetkerphi$ and so $phi$ factors over the morphism $C longrightarrow operatorname{coker}g$. So the implication holds for all $phi$ if and only if it holds for the factor map $pi: C longrightarrow operatorname{coker}g$.
    $endgroup$
    – Servaes
    Dec 5 '18 at 21:42





















0












$begingroup$

1) No, not necessarily. Here's a counterexample. Let $B=mathbb{Z}$ and $C=P=mathbb{Q}$ as $R=mathbb{Z}$-modules. Further, let $g:Bto C$, i.e. $g:mathbb{Z}tomathbb{Q}$, be the inclusion map $g(n)=n$. Then for any $varphi:Cto P$, i.e. for any $varphi:mathbb{Q}tomathbb{Q}$, $varphicirc g=0$ implies $varphi=0$ (basically, because $varphicirc g=0$ implies $varphi(1)=0$ implies $varphi=0$). And yet, $gneq0$.



2) No, not necessarily. Here's a counterexample. Let $A=B=C=mathbb{Z}$ and $P=mathbb{Z}_2$ as $R=mathbb{Z}$-modules. Further, let $f:mathbb{Z}tomathbb{Z}$ be the identity map $f(n)=n$ and $g:mathbb{Z}tomathbb{Z}$ be multiplication by two map $g(n)=2n$. Then for any $varphi:mathbb{Z}tomathbb{Z}_2$. we have $varphicirc gcirc f=0$, even though $gcirc fneq0$.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3027528%2fsurjective-module-homomorphism-0-module-homomorphism%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    For the first point consider for $phi$ the quotient morphism $pi: C longrightarrow operatorname{coker}g$.



    For the second point consider for $phi$ the identity morphism $operatorname{id}: C longrightarrow C$.






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      Oh, so nice! Especially the one with the cokernel. How did you think about that? Is it a standard trick?
      $endgroup$
      – roi_saumon
      Dec 5 '18 at 21:27










    • $begingroup$
      Well if $phicirc g=0$ then $operatorname{im}gsubsetkerphi$ and so $phi$ factors over the morphism $C longrightarrow operatorname{coker}g$. So the implication holds for all $phi$ if and only if it holds for the factor map $pi: C longrightarrow operatorname{coker}g$.
      $endgroup$
      – Servaes
      Dec 5 '18 at 21:42


















    1












    $begingroup$

    For the first point consider for $phi$ the quotient morphism $pi: C longrightarrow operatorname{coker}g$.



    For the second point consider for $phi$ the identity morphism $operatorname{id}: C longrightarrow C$.






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      Oh, so nice! Especially the one with the cokernel. How did you think about that? Is it a standard trick?
      $endgroup$
      – roi_saumon
      Dec 5 '18 at 21:27










    • $begingroup$
      Well if $phicirc g=0$ then $operatorname{im}gsubsetkerphi$ and so $phi$ factors over the morphism $C longrightarrow operatorname{coker}g$. So the implication holds for all $phi$ if and only if it holds for the factor map $pi: C longrightarrow operatorname{coker}g$.
      $endgroup$
      – Servaes
      Dec 5 '18 at 21:42
















    1












    1








    1





    $begingroup$

    For the first point consider for $phi$ the quotient morphism $pi: C longrightarrow operatorname{coker}g$.



    For the second point consider for $phi$ the identity morphism $operatorname{id}: C longrightarrow C$.






    share|cite|improve this answer











    $endgroup$



    For the first point consider for $phi$ the quotient morphism $pi: C longrightarrow operatorname{coker}g$.



    For the second point consider for $phi$ the identity morphism $operatorname{id}: C longrightarrow C$.







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Dec 5 '18 at 21:42

























    answered Dec 5 '18 at 19:33









    ServaesServaes

    26.8k34098




    26.8k34098












    • $begingroup$
      Oh, so nice! Especially the one with the cokernel. How did you think about that? Is it a standard trick?
      $endgroup$
      – roi_saumon
      Dec 5 '18 at 21:27










    • $begingroup$
      Well if $phicirc g=0$ then $operatorname{im}gsubsetkerphi$ and so $phi$ factors over the morphism $C longrightarrow operatorname{coker}g$. So the implication holds for all $phi$ if and only if it holds for the factor map $pi: C longrightarrow operatorname{coker}g$.
      $endgroup$
      – Servaes
      Dec 5 '18 at 21:42




















    • $begingroup$
      Oh, so nice! Especially the one with the cokernel. How did you think about that? Is it a standard trick?
      $endgroup$
      – roi_saumon
      Dec 5 '18 at 21:27










    • $begingroup$
      Well if $phicirc g=0$ then $operatorname{im}gsubsetkerphi$ and so $phi$ factors over the morphism $C longrightarrow operatorname{coker}g$. So the implication holds for all $phi$ if and only if it holds for the factor map $pi: C longrightarrow operatorname{coker}g$.
      $endgroup$
      – Servaes
      Dec 5 '18 at 21:42


















    $begingroup$
    Oh, so nice! Especially the one with the cokernel. How did you think about that? Is it a standard trick?
    $endgroup$
    – roi_saumon
    Dec 5 '18 at 21:27




    $begingroup$
    Oh, so nice! Especially the one with the cokernel. How did you think about that? Is it a standard trick?
    $endgroup$
    – roi_saumon
    Dec 5 '18 at 21:27












    $begingroup$
    Well if $phicirc g=0$ then $operatorname{im}gsubsetkerphi$ and so $phi$ factors over the morphism $C longrightarrow operatorname{coker}g$. So the implication holds for all $phi$ if and only if it holds for the factor map $pi: C longrightarrow operatorname{coker}g$.
    $endgroup$
    – Servaes
    Dec 5 '18 at 21:42






    $begingroup$
    Well if $phicirc g=0$ then $operatorname{im}gsubsetkerphi$ and so $phi$ factors over the morphism $C longrightarrow operatorname{coker}g$. So the implication holds for all $phi$ if and only if it holds for the factor map $pi: C longrightarrow operatorname{coker}g$.
    $endgroup$
    – Servaes
    Dec 5 '18 at 21:42













    0












    $begingroup$

    1) No, not necessarily. Here's a counterexample. Let $B=mathbb{Z}$ and $C=P=mathbb{Q}$ as $R=mathbb{Z}$-modules. Further, let $g:Bto C$, i.e. $g:mathbb{Z}tomathbb{Q}$, be the inclusion map $g(n)=n$. Then for any $varphi:Cto P$, i.e. for any $varphi:mathbb{Q}tomathbb{Q}$, $varphicirc g=0$ implies $varphi=0$ (basically, because $varphicirc g=0$ implies $varphi(1)=0$ implies $varphi=0$). And yet, $gneq0$.



    2) No, not necessarily. Here's a counterexample. Let $A=B=C=mathbb{Z}$ and $P=mathbb{Z}_2$ as $R=mathbb{Z}$-modules. Further, let $f:mathbb{Z}tomathbb{Z}$ be the identity map $f(n)=n$ and $g:mathbb{Z}tomathbb{Z}$ be multiplication by two map $g(n)=2n$. Then for any $varphi:mathbb{Z}tomathbb{Z}_2$. we have $varphicirc gcirc f=0$, even though $gcirc fneq0$.






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      1) No, not necessarily. Here's a counterexample. Let $B=mathbb{Z}$ and $C=P=mathbb{Q}$ as $R=mathbb{Z}$-modules. Further, let $g:Bto C$, i.e. $g:mathbb{Z}tomathbb{Q}$, be the inclusion map $g(n)=n$. Then for any $varphi:Cto P$, i.e. for any $varphi:mathbb{Q}tomathbb{Q}$, $varphicirc g=0$ implies $varphi=0$ (basically, because $varphicirc g=0$ implies $varphi(1)=0$ implies $varphi=0$). And yet, $gneq0$.



      2) No, not necessarily. Here's a counterexample. Let $A=B=C=mathbb{Z}$ and $P=mathbb{Z}_2$ as $R=mathbb{Z}$-modules. Further, let $f:mathbb{Z}tomathbb{Z}$ be the identity map $f(n)=n$ and $g:mathbb{Z}tomathbb{Z}$ be multiplication by two map $g(n)=2n$. Then for any $varphi:mathbb{Z}tomathbb{Z}_2$. we have $varphicirc gcirc f=0$, even though $gcirc fneq0$.






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        1) No, not necessarily. Here's a counterexample. Let $B=mathbb{Z}$ and $C=P=mathbb{Q}$ as $R=mathbb{Z}$-modules. Further, let $g:Bto C$, i.e. $g:mathbb{Z}tomathbb{Q}$, be the inclusion map $g(n)=n$. Then for any $varphi:Cto P$, i.e. for any $varphi:mathbb{Q}tomathbb{Q}$, $varphicirc g=0$ implies $varphi=0$ (basically, because $varphicirc g=0$ implies $varphi(1)=0$ implies $varphi=0$). And yet, $gneq0$.



        2) No, not necessarily. Here's a counterexample. Let $A=B=C=mathbb{Z}$ and $P=mathbb{Z}_2$ as $R=mathbb{Z}$-modules. Further, let $f:mathbb{Z}tomathbb{Z}$ be the identity map $f(n)=n$ and $g:mathbb{Z}tomathbb{Z}$ be multiplication by two map $g(n)=2n$. Then for any $varphi:mathbb{Z}tomathbb{Z}_2$. we have $varphicirc gcirc f=0$, even though $gcirc fneq0$.






        share|cite|improve this answer









        $endgroup$



        1) No, not necessarily. Here's a counterexample. Let $B=mathbb{Z}$ and $C=P=mathbb{Q}$ as $R=mathbb{Z}$-modules. Further, let $g:Bto C$, i.e. $g:mathbb{Z}tomathbb{Q}$, be the inclusion map $g(n)=n$. Then for any $varphi:Cto P$, i.e. for any $varphi:mathbb{Q}tomathbb{Q}$, $varphicirc g=0$ implies $varphi=0$ (basically, because $varphicirc g=0$ implies $varphi(1)=0$ implies $varphi=0$). And yet, $gneq0$.



        2) No, not necessarily. Here's a counterexample. Let $A=B=C=mathbb{Z}$ and $P=mathbb{Z}_2$ as $R=mathbb{Z}$-modules. Further, let $f:mathbb{Z}tomathbb{Z}$ be the identity map $f(n)=n$ and $g:mathbb{Z}tomathbb{Z}$ be multiplication by two map $g(n)=2n$. Then for any $varphi:mathbb{Z}tomathbb{Z}_2$. we have $varphicirc gcirc f=0$, even though $gcirc fneq0$.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 5 '18 at 21:54









        zipirovichzipirovich

        11.3k11731




        11.3k11731






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3027528%2fsurjective-module-homomorphism-0-module-homomorphism%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            mysqli_query(): Empty query in /home/lucindabrummitt/public_html/blog/wp-includes/wp-db.php on line 1924

            How to change which sound is reproduced for terminal bell?

            Can I use Tabulator js library in my java Spring + Thymeleaf project?