Surjective module homomorphism? $0$ module homomorphism?
$begingroup$
I am trying to resolve an exercise and there are 2 point that are missing in order to finalize:
Suppose $A$, $B$, $C$, and $P$ are $R$-modules, and $f:A rightarrow B$ and $g:Brightarrow C$ are both $R$-module morphisms.
1) $forall phi : C rightarrow P$ morphism, if $phi circ g = 0 Rightarrow phi = 0$, for a morphism $phi : C rightarrow P$, does this imply that $g$ is surjective? Why?
2) If $phi circ g circ f = 0$ $ forall phi : C rightarrow P$ morphism does this mean that $g circ f = 0$? Why?
modules
$endgroup$
add a comment |
$begingroup$
I am trying to resolve an exercise and there are 2 point that are missing in order to finalize:
Suppose $A$, $B$, $C$, and $P$ are $R$-modules, and $f:A rightarrow B$ and $g:Brightarrow C$ are both $R$-module morphisms.
1) $forall phi : C rightarrow P$ morphism, if $phi circ g = 0 Rightarrow phi = 0$, for a morphism $phi : C rightarrow P$, does this imply that $g$ is surjective? Why?
2) If $phi circ g circ f = 0$ $ forall phi : C rightarrow P$ morphism does this mean that $g circ f = 0$? Why?
modules
$endgroup$
1
$begingroup$
In the first point, should the implication hold for some morphism $phi$ or for all morphisms $phi$? And is $P$ some fixed $R$-module, or should the implication hold for all $R$-modules $P$?
$endgroup$
– Servaes
Dec 5 '18 at 19:30
$begingroup$
for all! I will edit, thanks
$endgroup$
– roi_saumon
Dec 5 '18 at 19:31
add a comment |
$begingroup$
I am trying to resolve an exercise and there are 2 point that are missing in order to finalize:
Suppose $A$, $B$, $C$, and $P$ are $R$-modules, and $f:A rightarrow B$ and $g:Brightarrow C$ are both $R$-module morphisms.
1) $forall phi : C rightarrow P$ morphism, if $phi circ g = 0 Rightarrow phi = 0$, for a morphism $phi : C rightarrow P$, does this imply that $g$ is surjective? Why?
2) If $phi circ g circ f = 0$ $ forall phi : C rightarrow P$ morphism does this mean that $g circ f = 0$? Why?
modules
$endgroup$
I am trying to resolve an exercise and there are 2 point that are missing in order to finalize:
Suppose $A$, $B$, $C$, and $P$ are $R$-modules, and $f:A rightarrow B$ and $g:Brightarrow C$ are both $R$-module morphisms.
1) $forall phi : C rightarrow P$ morphism, if $phi circ g = 0 Rightarrow phi = 0$, for a morphism $phi : C rightarrow P$, does this imply that $g$ is surjective? Why?
2) If $phi circ g circ f = 0$ $ forall phi : C rightarrow P$ morphism does this mean that $g circ f = 0$? Why?
modules
modules
edited Dec 5 '18 at 19:35
zipirovich
11.3k11731
11.3k11731
asked Dec 5 '18 at 19:21
roi_saumonroi_saumon
57238
57238
1
$begingroup$
In the first point, should the implication hold for some morphism $phi$ or for all morphisms $phi$? And is $P$ some fixed $R$-module, or should the implication hold for all $R$-modules $P$?
$endgroup$
– Servaes
Dec 5 '18 at 19:30
$begingroup$
for all! I will edit, thanks
$endgroup$
– roi_saumon
Dec 5 '18 at 19:31
add a comment |
1
$begingroup$
In the first point, should the implication hold for some morphism $phi$ or for all morphisms $phi$? And is $P$ some fixed $R$-module, or should the implication hold for all $R$-modules $P$?
$endgroup$
– Servaes
Dec 5 '18 at 19:30
$begingroup$
for all! I will edit, thanks
$endgroup$
– roi_saumon
Dec 5 '18 at 19:31
1
1
$begingroup$
In the first point, should the implication hold for some morphism $phi$ or for all morphisms $phi$? And is $P$ some fixed $R$-module, or should the implication hold for all $R$-modules $P$?
$endgroup$
– Servaes
Dec 5 '18 at 19:30
$begingroup$
In the first point, should the implication hold for some morphism $phi$ or for all morphisms $phi$? And is $P$ some fixed $R$-module, or should the implication hold for all $R$-modules $P$?
$endgroup$
– Servaes
Dec 5 '18 at 19:30
$begingroup$
for all! I will edit, thanks
$endgroup$
– roi_saumon
Dec 5 '18 at 19:31
$begingroup$
for all! I will edit, thanks
$endgroup$
– roi_saumon
Dec 5 '18 at 19:31
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
For the first point consider for $phi$ the quotient morphism $pi: C longrightarrow operatorname{coker}g$.
For the second point consider for $phi$ the identity morphism $operatorname{id}: C longrightarrow C$.
$endgroup$
$begingroup$
Oh, so nice! Especially the one with the cokernel. How did you think about that? Is it a standard trick?
$endgroup$
– roi_saumon
Dec 5 '18 at 21:27
$begingroup$
Well if $phicirc g=0$ then $operatorname{im}gsubsetkerphi$ and so $phi$ factors over the morphism $C longrightarrow operatorname{coker}g$. So the implication holds for all $phi$ if and only if it holds for the factor map $pi: C longrightarrow operatorname{coker}g$.
$endgroup$
– Servaes
Dec 5 '18 at 21:42
add a comment |
$begingroup$
1) No, not necessarily. Here's a counterexample. Let $B=mathbb{Z}$ and $C=P=mathbb{Q}$ as $R=mathbb{Z}$-modules. Further, let $g:Bto C$, i.e. $g:mathbb{Z}tomathbb{Q}$, be the inclusion map $g(n)=n$. Then for any $varphi:Cto P$, i.e. for any $varphi:mathbb{Q}tomathbb{Q}$, $varphicirc g=0$ implies $varphi=0$ (basically, because $varphicirc g=0$ implies $varphi(1)=0$ implies $varphi=0$). And yet, $gneq0$.
2) No, not necessarily. Here's a counterexample. Let $A=B=C=mathbb{Z}$ and $P=mathbb{Z}_2$ as $R=mathbb{Z}$-modules. Further, let $f:mathbb{Z}tomathbb{Z}$ be the identity map $f(n)=n$ and $g:mathbb{Z}tomathbb{Z}$ be multiplication by two map $g(n)=2n$. Then for any $varphi:mathbb{Z}tomathbb{Z}_2$. we have $varphicirc gcirc f=0$, even though $gcirc fneq0$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3027528%2fsurjective-module-homomorphism-0-module-homomorphism%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
For the first point consider for $phi$ the quotient morphism $pi: C longrightarrow operatorname{coker}g$.
For the second point consider for $phi$ the identity morphism $operatorname{id}: C longrightarrow C$.
$endgroup$
$begingroup$
Oh, so nice! Especially the one with the cokernel. How did you think about that? Is it a standard trick?
$endgroup$
– roi_saumon
Dec 5 '18 at 21:27
$begingroup$
Well if $phicirc g=0$ then $operatorname{im}gsubsetkerphi$ and so $phi$ factors over the morphism $C longrightarrow operatorname{coker}g$. So the implication holds for all $phi$ if and only if it holds for the factor map $pi: C longrightarrow operatorname{coker}g$.
$endgroup$
– Servaes
Dec 5 '18 at 21:42
add a comment |
$begingroup$
For the first point consider for $phi$ the quotient morphism $pi: C longrightarrow operatorname{coker}g$.
For the second point consider for $phi$ the identity morphism $operatorname{id}: C longrightarrow C$.
$endgroup$
$begingroup$
Oh, so nice! Especially the one with the cokernel. How did you think about that? Is it a standard trick?
$endgroup$
– roi_saumon
Dec 5 '18 at 21:27
$begingroup$
Well if $phicirc g=0$ then $operatorname{im}gsubsetkerphi$ and so $phi$ factors over the morphism $C longrightarrow operatorname{coker}g$. So the implication holds for all $phi$ if and only if it holds for the factor map $pi: C longrightarrow operatorname{coker}g$.
$endgroup$
– Servaes
Dec 5 '18 at 21:42
add a comment |
$begingroup$
For the first point consider for $phi$ the quotient morphism $pi: C longrightarrow operatorname{coker}g$.
For the second point consider for $phi$ the identity morphism $operatorname{id}: C longrightarrow C$.
$endgroup$
For the first point consider for $phi$ the quotient morphism $pi: C longrightarrow operatorname{coker}g$.
For the second point consider for $phi$ the identity morphism $operatorname{id}: C longrightarrow C$.
edited Dec 5 '18 at 21:42
answered Dec 5 '18 at 19:33
ServaesServaes
26.8k34098
26.8k34098
$begingroup$
Oh, so nice! Especially the one with the cokernel. How did you think about that? Is it a standard trick?
$endgroup$
– roi_saumon
Dec 5 '18 at 21:27
$begingroup$
Well if $phicirc g=0$ then $operatorname{im}gsubsetkerphi$ and so $phi$ factors over the morphism $C longrightarrow operatorname{coker}g$. So the implication holds for all $phi$ if and only if it holds for the factor map $pi: C longrightarrow operatorname{coker}g$.
$endgroup$
– Servaes
Dec 5 '18 at 21:42
add a comment |
$begingroup$
Oh, so nice! Especially the one with the cokernel. How did you think about that? Is it a standard trick?
$endgroup$
– roi_saumon
Dec 5 '18 at 21:27
$begingroup$
Well if $phicirc g=0$ then $operatorname{im}gsubsetkerphi$ and so $phi$ factors over the morphism $C longrightarrow operatorname{coker}g$. So the implication holds for all $phi$ if and only if it holds for the factor map $pi: C longrightarrow operatorname{coker}g$.
$endgroup$
– Servaes
Dec 5 '18 at 21:42
$begingroup$
Oh, so nice! Especially the one with the cokernel. How did you think about that? Is it a standard trick?
$endgroup$
– roi_saumon
Dec 5 '18 at 21:27
$begingroup$
Oh, so nice! Especially the one with the cokernel. How did you think about that? Is it a standard trick?
$endgroup$
– roi_saumon
Dec 5 '18 at 21:27
$begingroup$
Well if $phicirc g=0$ then $operatorname{im}gsubsetkerphi$ and so $phi$ factors over the morphism $C longrightarrow operatorname{coker}g$. So the implication holds for all $phi$ if and only if it holds for the factor map $pi: C longrightarrow operatorname{coker}g$.
$endgroup$
– Servaes
Dec 5 '18 at 21:42
$begingroup$
Well if $phicirc g=0$ then $operatorname{im}gsubsetkerphi$ and so $phi$ factors over the morphism $C longrightarrow operatorname{coker}g$. So the implication holds for all $phi$ if and only if it holds for the factor map $pi: C longrightarrow operatorname{coker}g$.
$endgroup$
– Servaes
Dec 5 '18 at 21:42
add a comment |
$begingroup$
1) No, not necessarily. Here's a counterexample. Let $B=mathbb{Z}$ and $C=P=mathbb{Q}$ as $R=mathbb{Z}$-modules. Further, let $g:Bto C$, i.e. $g:mathbb{Z}tomathbb{Q}$, be the inclusion map $g(n)=n$. Then for any $varphi:Cto P$, i.e. for any $varphi:mathbb{Q}tomathbb{Q}$, $varphicirc g=0$ implies $varphi=0$ (basically, because $varphicirc g=0$ implies $varphi(1)=0$ implies $varphi=0$). And yet, $gneq0$.
2) No, not necessarily. Here's a counterexample. Let $A=B=C=mathbb{Z}$ and $P=mathbb{Z}_2$ as $R=mathbb{Z}$-modules. Further, let $f:mathbb{Z}tomathbb{Z}$ be the identity map $f(n)=n$ and $g:mathbb{Z}tomathbb{Z}$ be multiplication by two map $g(n)=2n$. Then for any $varphi:mathbb{Z}tomathbb{Z}_2$. we have $varphicirc gcirc f=0$, even though $gcirc fneq0$.
$endgroup$
add a comment |
$begingroup$
1) No, not necessarily. Here's a counterexample. Let $B=mathbb{Z}$ and $C=P=mathbb{Q}$ as $R=mathbb{Z}$-modules. Further, let $g:Bto C$, i.e. $g:mathbb{Z}tomathbb{Q}$, be the inclusion map $g(n)=n$. Then for any $varphi:Cto P$, i.e. for any $varphi:mathbb{Q}tomathbb{Q}$, $varphicirc g=0$ implies $varphi=0$ (basically, because $varphicirc g=0$ implies $varphi(1)=0$ implies $varphi=0$). And yet, $gneq0$.
2) No, not necessarily. Here's a counterexample. Let $A=B=C=mathbb{Z}$ and $P=mathbb{Z}_2$ as $R=mathbb{Z}$-modules. Further, let $f:mathbb{Z}tomathbb{Z}$ be the identity map $f(n)=n$ and $g:mathbb{Z}tomathbb{Z}$ be multiplication by two map $g(n)=2n$. Then for any $varphi:mathbb{Z}tomathbb{Z}_2$. we have $varphicirc gcirc f=0$, even though $gcirc fneq0$.
$endgroup$
add a comment |
$begingroup$
1) No, not necessarily. Here's a counterexample. Let $B=mathbb{Z}$ and $C=P=mathbb{Q}$ as $R=mathbb{Z}$-modules. Further, let $g:Bto C$, i.e. $g:mathbb{Z}tomathbb{Q}$, be the inclusion map $g(n)=n$. Then for any $varphi:Cto P$, i.e. for any $varphi:mathbb{Q}tomathbb{Q}$, $varphicirc g=0$ implies $varphi=0$ (basically, because $varphicirc g=0$ implies $varphi(1)=0$ implies $varphi=0$). And yet, $gneq0$.
2) No, not necessarily. Here's a counterexample. Let $A=B=C=mathbb{Z}$ and $P=mathbb{Z}_2$ as $R=mathbb{Z}$-modules. Further, let $f:mathbb{Z}tomathbb{Z}$ be the identity map $f(n)=n$ and $g:mathbb{Z}tomathbb{Z}$ be multiplication by two map $g(n)=2n$. Then for any $varphi:mathbb{Z}tomathbb{Z}_2$. we have $varphicirc gcirc f=0$, even though $gcirc fneq0$.
$endgroup$
1) No, not necessarily. Here's a counterexample. Let $B=mathbb{Z}$ and $C=P=mathbb{Q}$ as $R=mathbb{Z}$-modules. Further, let $g:Bto C$, i.e. $g:mathbb{Z}tomathbb{Q}$, be the inclusion map $g(n)=n$. Then for any $varphi:Cto P$, i.e. for any $varphi:mathbb{Q}tomathbb{Q}$, $varphicirc g=0$ implies $varphi=0$ (basically, because $varphicirc g=0$ implies $varphi(1)=0$ implies $varphi=0$). And yet, $gneq0$.
2) No, not necessarily. Here's a counterexample. Let $A=B=C=mathbb{Z}$ and $P=mathbb{Z}_2$ as $R=mathbb{Z}$-modules. Further, let $f:mathbb{Z}tomathbb{Z}$ be the identity map $f(n)=n$ and $g:mathbb{Z}tomathbb{Z}$ be multiplication by two map $g(n)=2n$. Then for any $varphi:mathbb{Z}tomathbb{Z}_2$. we have $varphicirc gcirc f=0$, even though $gcirc fneq0$.
answered Dec 5 '18 at 21:54
zipirovichzipirovich
11.3k11731
11.3k11731
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3027528%2fsurjective-module-homomorphism-0-module-homomorphism%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
In the first point, should the implication hold for some morphism $phi$ or for all morphisms $phi$? And is $P$ some fixed $R$-module, or should the implication hold for all $R$-modules $P$?
$endgroup$
– Servaes
Dec 5 '18 at 19:30
$begingroup$
for all! I will edit, thanks
$endgroup$
– roi_saumon
Dec 5 '18 at 19:31