Combining svyimputationLists












1














I am working with the Survey of Consumer Finances dataset and am looking to do analysis across years. My initial thought is to combine them into the same svyimputationList, but my attempts don't seem to actually combine the data. they remain as different lists within a larger svyimputationList. There could be other ways to do analysis across years (I mainly looking to be able to run some regressions) so those answers are also welcome.



The class of the scf_design sets are "svyimuptationList".



Below is the code I have used in order to gather the datasets and my attempt to combine.



library(lodown)
library(survey)
library(mitools)
library(plyr)

scf_cat <-
get_catalog( "scf" ,
output_dir = file.path( path.expand( "~" ) , "SCF" ) )
# 2016 only
scf_cat_16 <- subset( scf_cat , year == 2016 )
#2013 only
scf_cat_13 <- subset( scf_cat , year == 2013 )
# download the microdata to your local computer
scf_cat_16 <- lodown( "scf" , scf_cat_16 )
scf_cat_13 <- lodown( "scf" , scf_cat_13 )
#setup the data to control for the survey style and MI
scf_imp_16 <- readRDS( file.path( path.expand( "~" ) , "SCF" , "scf 2016.rds" ) )
scf_rw_16 <- readRDS( file.path( path.expand( "~" ) , "SCF" , "scf 2016 rw.rds" ) )
scf_imp_13 <- readRDS( file.path( path.expand( "~" ) , "SCF" , "scf 2013.rds" ) )
scf_rw_13 <- readRDS( file.path( path.expand( "~" ) , "SCF" , "scf 2013 rw.rds" ) )
#APPLYING THE WEIGHTS TO THE DATA#####
scf_design_16 <-
svrepdesign(
weights = ~wgt ,
repweights = scf_rw_16[ , -1 ] ,
data = imputationList( scf_imp_16 ) ,
scale = 1 ,
rscales = rep( 1 / 998 , 999 ) ,
mse = FALSE ,
type = "other" ,
combined.weights = TRUE
)
scf_design_13 <-
svrepdesign(
weights = ~wgt ,
repweights = scf_rw_13[ , -1 ] ,
data = imputationList( scf_imp_13 ) ,
scale = 1 ,
rscales = rep( 1 / 998 , 999 ) ,
mse = FALSE ,
type = "other" ,
combined.weights = TRUE
)


scf_design <- rbind(scf_design_16,scf_design_13)









share|improve this question
























  • Well if you are creating lists that you want to piece together this cannot be done with rbind (row bind), appending a list would be done with list.append(.data, ...). But I have no idea what svredesign() does, so maybe show us the class and structure of scf_design_13/16
    – Chabo
    Nov 15 at 22:32












  • Also please include the libraries being used.
    – Chabo
    Nov 15 at 22:33






  • 1




    hi, the imp_13 and imp_16 lists each have data frames in them. you'll want to stack each of them, respectively. rw_13 and rw_16 are already data.frame objects, also stack those. ultimately you want to construct something like this asdfree.com/… but this example is svydesign where scf is svrepdesign
    – Anthony Damico
    Nov 16 at 16:49










  • hello, I have been dabbling around with this for a bit and believe that I am close doing some subsetting of the variables in order to stack the imputations. The one thing I am unsure of is how to work with the weight file in order to ensure that maintains its integrity with the svydesign. This comes from the fact that the dataframe is labeled weight1,weight2,...
    – E. Nicholson
    Nov 24 at 2:38
















1














I am working with the Survey of Consumer Finances dataset and am looking to do analysis across years. My initial thought is to combine them into the same svyimputationList, but my attempts don't seem to actually combine the data. they remain as different lists within a larger svyimputationList. There could be other ways to do analysis across years (I mainly looking to be able to run some regressions) so those answers are also welcome.



The class of the scf_design sets are "svyimuptationList".



Below is the code I have used in order to gather the datasets and my attempt to combine.



library(lodown)
library(survey)
library(mitools)
library(plyr)

scf_cat <-
get_catalog( "scf" ,
output_dir = file.path( path.expand( "~" ) , "SCF" ) )
# 2016 only
scf_cat_16 <- subset( scf_cat , year == 2016 )
#2013 only
scf_cat_13 <- subset( scf_cat , year == 2013 )
# download the microdata to your local computer
scf_cat_16 <- lodown( "scf" , scf_cat_16 )
scf_cat_13 <- lodown( "scf" , scf_cat_13 )
#setup the data to control for the survey style and MI
scf_imp_16 <- readRDS( file.path( path.expand( "~" ) , "SCF" , "scf 2016.rds" ) )
scf_rw_16 <- readRDS( file.path( path.expand( "~" ) , "SCF" , "scf 2016 rw.rds" ) )
scf_imp_13 <- readRDS( file.path( path.expand( "~" ) , "SCF" , "scf 2013.rds" ) )
scf_rw_13 <- readRDS( file.path( path.expand( "~" ) , "SCF" , "scf 2013 rw.rds" ) )
#APPLYING THE WEIGHTS TO THE DATA#####
scf_design_16 <-
svrepdesign(
weights = ~wgt ,
repweights = scf_rw_16[ , -1 ] ,
data = imputationList( scf_imp_16 ) ,
scale = 1 ,
rscales = rep( 1 / 998 , 999 ) ,
mse = FALSE ,
type = "other" ,
combined.weights = TRUE
)
scf_design_13 <-
svrepdesign(
weights = ~wgt ,
repweights = scf_rw_13[ , -1 ] ,
data = imputationList( scf_imp_13 ) ,
scale = 1 ,
rscales = rep( 1 / 998 , 999 ) ,
mse = FALSE ,
type = "other" ,
combined.weights = TRUE
)


scf_design <- rbind(scf_design_16,scf_design_13)









share|improve this question
























  • Well if you are creating lists that you want to piece together this cannot be done with rbind (row bind), appending a list would be done with list.append(.data, ...). But I have no idea what svredesign() does, so maybe show us the class and structure of scf_design_13/16
    – Chabo
    Nov 15 at 22:32












  • Also please include the libraries being used.
    – Chabo
    Nov 15 at 22:33






  • 1




    hi, the imp_13 and imp_16 lists each have data frames in them. you'll want to stack each of them, respectively. rw_13 and rw_16 are already data.frame objects, also stack those. ultimately you want to construct something like this asdfree.com/… but this example is svydesign where scf is svrepdesign
    – Anthony Damico
    Nov 16 at 16:49










  • hello, I have been dabbling around with this for a bit and believe that I am close doing some subsetting of the variables in order to stack the imputations. The one thing I am unsure of is how to work with the weight file in order to ensure that maintains its integrity with the svydesign. This comes from the fact that the dataframe is labeled weight1,weight2,...
    – E. Nicholson
    Nov 24 at 2:38














1












1








1







I am working with the Survey of Consumer Finances dataset and am looking to do analysis across years. My initial thought is to combine them into the same svyimputationList, but my attempts don't seem to actually combine the data. they remain as different lists within a larger svyimputationList. There could be other ways to do analysis across years (I mainly looking to be able to run some regressions) so those answers are also welcome.



The class of the scf_design sets are "svyimuptationList".



Below is the code I have used in order to gather the datasets and my attempt to combine.



library(lodown)
library(survey)
library(mitools)
library(plyr)

scf_cat <-
get_catalog( "scf" ,
output_dir = file.path( path.expand( "~" ) , "SCF" ) )
# 2016 only
scf_cat_16 <- subset( scf_cat , year == 2016 )
#2013 only
scf_cat_13 <- subset( scf_cat , year == 2013 )
# download the microdata to your local computer
scf_cat_16 <- lodown( "scf" , scf_cat_16 )
scf_cat_13 <- lodown( "scf" , scf_cat_13 )
#setup the data to control for the survey style and MI
scf_imp_16 <- readRDS( file.path( path.expand( "~" ) , "SCF" , "scf 2016.rds" ) )
scf_rw_16 <- readRDS( file.path( path.expand( "~" ) , "SCF" , "scf 2016 rw.rds" ) )
scf_imp_13 <- readRDS( file.path( path.expand( "~" ) , "SCF" , "scf 2013.rds" ) )
scf_rw_13 <- readRDS( file.path( path.expand( "~" ) , "SCF" , "scf 2013 rw.rds" ) )
#APPLYING THE WEIGHTS TO THE DATA#####
scf_design_16 <-
svrepdesign(
weights = ~wgt ,
repweights = scf_rw_16[ , -1 ] ,
data = imputationList( scf_imp_16 ) ,
scale = 1 ,
rscales = rep( 1 / 998 , 999 ) ,
mse = FALSE ,
type = "other" ,
combined.weights = TRUE
)
scf_design_13 <-
svrepdesign(
weights = ~wgt ,
repweights = scf_rw_13[ , -1 ] ,
data = imputationList( scf_imp_13 ) ,
scale = 1 ,
rscales = rep( 1 / 998 , 999 ) ,
mse = FALSE ,
type = "other" ,
combined.weights = TRUE
)


scf_design <- rbind(scf_design_16,scf_design_13)









share|improve this question















I am working with the Survey of Consumer Finances dataset and am looking to do analysis across years. My initial thought is to combine them into the same svyimputationList, but my attempts don't seem to actually combine the data. they remain as different lists within a larger svyimputationList. There could be other ways to do analysis across years (I mainly looking to be able to run some regressions) so those answers are also welcome.



The class of the scf_design sets are "svyimuptationList".



Below is the code I have used in order to gather the datasets and my attempt to combine.



library(lodown)
library(survey)
library(mitools)
library(plyr)

scf_cat <-
get_catalog( "scf" ,
output_dir = file.path( path.expand( "~" ) , "SCF" ) )
# 2016 only
scf_cat_16 <- subset( scf_cat , year == 2016 )
#2013 only
scf_cat_13 <- subset( scf_cat , year == 2013 )
# download the microdata to your local computer
scf_cat_16 <- lodown( "scf" , scf_cat_16 )
scf_cat_13 <- lodown( "scf" , scf_cat_13 )
#setup the data to control for the survey style and MI
scf_imp_16 <- readRDS( file.path( path.expand( "~" ) , "SCF" , "scf 2016.rds" ) )
scf_rw_16 <- readRDS( file.path( path.expand( "~" ) , "SCF" , "scf 2016 rw.rds" ) )
scf_imp_13 <- readRDS( file.path( path.expand( "~" ) , "SCF" , "scf 2013.rds" ) )
scf_rw_13 <- readRDS( file.path( path.expand( "~" ) , "SCF" , "scf 2013 rw.rds" ) )
#APPLYING THE WEIGHTS TO THE DATA#####
scf_design_16 <-
svrepdesign(
weights = ~wgt ,
repweights = scf_rw_16[ , -1 ] ,
data = imputationList( scf_imp_16 ) ,
scale = 1 ,
rscales = rep( 1 / 998 , 999 ) ,
mse = FALSE ,
type = "other" ,
combined.weights = TRUE
)
scf_design_13 <-
svrepdesign(
weights = ~wgt ,
repweights = scf_rw_13[ , -1 ] ,
data = imputationList( scf_imp_13 ) ,
scale = 1 ,
rscales = rep( 1 / 998 , 999 ) ,
mse = FALSE ,
type = "other" ,
combined.weights = TRUE
)


scf_design <- rbind(scf_design_16,scf_design_13)






r survey imputation






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Nov 18 at 20:57

























asked Nov 15 at 22:18









E. Nicholson

254




254












  • Well if you are creating lists that you want to piece together this cannot be done with rbind (row bind), appending a list would be done with list.append(.data, ...). But I have no idea what svredesign() does, so maybe show us the class and structure of scf_design_13/16
    – Chabo
    Nov 15 at 22:32












  • Also please include the libraries being used.
    – Chabo
    Nov 15 at 22:33






  • 1




    hi, the imp_13 and imp_16 lists each have data frames in them. you'll want to stack each of them, respectively. rw_13 and rw_16 are already data.frame objects, also stack those. ultimately you want to construct something like this asdfree.com/… but this example is svydesign where scf is svrepdesign
    – Anthony Damico
    Nov 16 at 16:49










  • hello, I have been dabbling around with this for a bit and believe that I am close doing some subsetting of the variables in order to stack the imputations. The one thing I am unsure of is how to work with the weight file in order to ensure that maintains its integrity with the svydesign. This comes from the fact that the dataframe is labeled weight1,weight2,...
    – E. Nicholson
    Nov 24 at 2:38


















  • Well if you are creating lists that you want to piece together this cannot be done with rbind (row bind), appending a list would be done with list.append(.data, ...). But I have no idea what svredesign() does, so maybe show us the class and structure of scf_design_13/16
    – Chabo
    Nov 15 at 22:32












  • Also please include the libraries being used.
    – Chabo
    Nov 15 at 22:33






  • 1




    hi, the imp_13 and imp_16 lists each have data frames in them. you'll want to stack each of them, respectively. rw_13 and rw_16 are already data.frame objects, also stack those. ultimately you want to construct something like this asdfree.com/… but this example is svydesign where scf is svrepdesign
    – Anthony Damico
    Nov 16 at 16:49










  • hello, I have been dabbling around with this for a bit and believe that I am close doing some subsetting of the variables in order to stack the imputations. The one thing I am unsure of is how to work with the weight file in order to ensure that maintains its integrity with the svydesign. This comes from the fact that the dataframe is labeled weight1,weight2,...
    – E. Nicholson
    Nov 24 at 2:38
















Well if you are creating lists that you want to piece together this cannot be done with rbind (row bind), appending a list would be done with list.append(.data, ...). But I have no idea what svredesign() does, so maybe show us the class and structure of scf_design_13/16
– Chabo
Nov 15 at 22:32






Well if you are creating lists that you want to piece together this cannot be done with rbind (row bind), appending a list would be done with list.append(.data, ...). But I have no idea what svredesign() does, so maybe show us the class and structure of scf_design_13/16
– Chabo
Nov 15 at 22:32














Also please include the libraries being used.
– Chabo
Nov 15 at 22:33




Also please include the libraries being used.
– Chabo
Nov 15 at 22:33




1




1




hi, the imp_13 and imp_16 lists each have data frames in them. you'll want to stack each of them, respectively. rw_13 and rw_16 are already data.frame objects, also stack those. ultimately you want to construct something like this asdfree.com/… but this example is svydesign where scf is svrepdesign
– Anthony Damico
Nov 16 at 16:49




hi, the imp_13 and imp_16 lists each have data frames in them. you'll want to stack each of them, respectively. rw_13 and rw_16 are already data.frame objects, also stack those. ultimately you want to construct something like this asdfree.com/… but this example is svydesign where scf is svrepdesign
– Anthony Damico
Nov 16 at 16:49












hello, I have been dabbling around with this for a bit and believe that I am close doing some subsetting of the variables in order to stack the imputations. The one thing I am unsure of is how to work with the weight file in order to ensure that maintains its integrity with the svydesign. This comes from the fact that the dataframe is labeled weight1,weight2,...
– E. Nicholson
Nov 24 at 2:38




hello, I have been dabbling around with this for a bit and believe that I am close doing some subsetting of the variables in order to stack the imputations. The one thing I am unsure of is how to work with the weight file in order to ensure that maintains its integrity with the svydesign. This comes from the fact that the dataframe is labeled weight1,weight2,...
– E. Nicholson
Nov 24 at 2:38












1 Answer
1






active

oldest

votes


















0














This is the answer that I have come up with after looking into what Anthony Damico commented:



It follows the form of stacking the data frames within the list of imputations and the replicate weight files to ultimately combine them to the svyimputationList.



scf_cat <-
get_catalog( "scf" ,
output_dir = file.path( path.expand( "~" ) , "SCF" ) )

yearslist <- list(10,13,16)
y1<- NULL
y2<- NULL
y3<- NULL
y4<- NULL
y5<- NULL
imp <- NULL
rw <- NULL
#loop to load in the desired years and assign the weights
for (i in 1:length(yearslist)){

year <- yearslist[i]
fullyear <- as.numeric(paste0("20",year))
df1 = scf_cat[FALSE,]


df1 <- subset( scf_cat , year == fullyear )
df2 <- lodown( "scf" , df1)

scf_imp <- readRDS( file.path( path.expand( "~" ) , "SCF" , paste0("scf ",fullyear,".rds" ) ))

for( i in 1:length(scf_imp)){

scf_imp[[i]][["year"]] <- fullyear

scf_imp[[i]] <- select(scf_imp[[i]],c("yy1","one","year","wgt","edcl","hhsex","age","married","kids","lf","lifecl",
"networth","racecl4","racecl","occat1","income","norminc","wsaved",
"spendmor","spendless","late","late60","hpayday","bshopnone",
"bshopgrdl","bshopmodr","checking","hcheck",
"saving","hsaving","mmda","cds","irakh","anypen","vehic","hvehic",
"own","nown","newcar2","newcar1","veh_inst","hveh_inst","x7543","x7540",
"x2206","x2209","x2210","x2211","x2212","x2213","x2219"))

}

scf_rw <- readRDS( file.path( path.expand( "~" ) , "SCF" , paste0("scf ",fullyear," rw.rds" ) ))

#piecing together the dataframes
#figure out a loop for this
y1<- rbind(scf_imp[[1]],y1)
y2<- rbind(scf_imp[[2]],y2)
y3<- rbind(scf_imp[[3]],y3)
y4<- rbind(scf_imp[[4]],y4)
y5<- rbind(scf_imp[[5]],y5)

rw <- rbind(scf_rw,rw)


#include or exclude incrimental saving
assign(paste0("scf_imp_",year),scf_imp)
assign(paste0("scf_rw_",year),scf_rw)


assign(paste0("scf_design_",year),
svrepdesign(
weights = ~wgt ,
repweights = scf_rw[ , -1 ] ,
data = imputationList( scf_imp ) ,
scale = 1 ,
rscales = rep( 1 / 998 , 999 ) ,
mse = FALSE ,
type = "other" ,
combined.weights = TRUE
))

rm(df1)
rm(df2)
rm(scf_imp)
rm(scf_rw)
}

#piecing together the imputations
imp <- list(y1,y2,y3,y4,y5)

#creating the design using the set of 3 years
design_full <- svrepdesign(
weights = ~wgt ,
repweights = rw[ , -1 ] ,
data = imputationList( imp ) ,
scale = 1 ,
rscales = rep( 1 / 998 , 999 ) ,
mse = FALSE ,
type = "other" ,
combined.weights = TRUE
)





share|improve this answer





















    Your Answer






    StackExchange.ifUsing("editor", function () {
    StackExchange.using("externalEditor", function () {
    StackExchange.using("snippets", function () {
    StackExchange.snippets.init();
    });
    });
    }, "code-snippets");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "1"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53328683%2fcombining-svyimputationlists%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0














    This is the answer that I have come up with after looking into what Anthony Damico commented:



    It follows the form of stacking the data frames within the list of imputations and the replicate weight files to ultimately combine them to the svyimputationList.



    scf_cat <-
    get_catalog( "scf" ,
    output_dir = file.path( path.expand( "~" ) , "SCF" ) )

    yearslist <- list(10,13,16)
    y1<- NULL
    y2<- NULL
    y3<- NULL
    y4<- NULL
    y5<- NULL
    imp <- NULL
    rw <- NULL
    #loop to load in the desired years and assign the weights
    for (i in 1:length(yearslist)){

    year <- yearslist[i]
    fullyear <- as.numeric(paste0("20",year))
    df1 = scf_cat[FALSE,]


    df1 <- subset( scf_cat , year == fullyear )
    df2 <- lodown( "scf" , df1)

    scf_imp <- readRDS( file.path( path.expand( "~" ) , "SCF" , paste0("scf ",fullyear,".rds" ) ))

    for( i in 1:length(scf_imp)){

    scf_imp[[i]][["year"]] <- fullyear

    scf_imp[[i]] <- select(scf_imp[[i]],c("yy1","one","year","wgt","edcl","hhsex","age","married","kids","lf","lifecl",
    "networth","racecl4","racecl","occat1","income","norminc","wsaved",
    "spendmor","spendless","late","late60","hpayday","bshopnone",
    "bshopgrdl","bshopmodr","checking","hcheck",
    "saving","hsaving","mmda","cds","irakh","anypen","vehic","hvehic",
    "own","nown","newcar2","newcar1","veh_inst","hveh_inst","x7543","x7540",
    "x2206","x2209","x2210","x2211","x2212","x2213","x2219"))

    }

    scf_rw <- readRDS( file.path( path.expand( "~" ) , "SCF" , paste0("scf ",fullyear," rw.rds" ) ))

    #piecing together the dataframes
    #figure out a loop for this
    y1<- rbind(scf_imp[[1]],y1)
    y2<- rbind(scf_imp[[2]],y2)
    y3<- rbind(scf_imp[[3]],y3)
    y4<- rbind(scf_imp[[4]],y4)
    y5<- rbind(scf_imp[[5]],y5)

    rw <- rbind(scf_rw,rw)


    #include or exclude incrimental saving
    assign(paste0("scf_imp_",year),scf_imp)
    assign(paste0("scf_rw_",year),scf_rw)


    assign(paste0("scf_design_",year),
    svrepdesign(
    weights = ~wgt ,
    repweights = scf_rw[ , -1 ] ,
    data = imputationList( scf_imp ) ,
    scale = 1 ,
    rscales = rep( 1 / 998 , 999 ) ,
    mse = FALSE ,
    type = "other" ,
    combined.weights = TRUE
    ))

    rm(df1)
    rm(df2)
    rm(scf_imp)
    rm(scf_rw)
    }

    #piecing together the imputations
    imp <- list(y1,y2,y3,y4,y5)

    #creating the design using the set of 3 years
    design_full <- svrepdesign(
    weights = ~wgt ,
    repweights = rw[ , -1 ] ,
    data = imputationList( imp ) ,
    scale = 1 ,
    rscales = rep( 1 / 998 , 999 ) ,
    mse = FALSE ,
    type = "other" ,
    combined.weights = TRUE
    )





    share|improve this answer


























      0














      This is the answer that I have come up with after looking into what Anthony Damico commented:



      It follows the form of stacking the data frames within the list of imputations and the replicate weight files to ultimately combine them to the svyimputationList.



      scf_cat <-
      get_catalog( "scf" ,
      output_dir = file.path( path.expand( "~" ) , "SCF" ) )

      yearslist <- list(10,13,16)
      y1<- NULL
      y2<- NULL
      y3<- NULL
      y4<- NULL
      y5<- NULL
      imp <- NULL
      rw <- NULL
      #loop to load in the desired years and assign the weights
      for (i in 1:length(yearslist)){

      year <- yearslist[i]
      fullyear <- as.numeric(paste0("20",year))
      df1 = scf_cat[FALSE,]


      df1 <- subset( scf_cat , year == fullyear )
      df2 <- lodown( "scf" , df1)

      scf_imp <- readRDS( file.path( path.expand( "~" ) , "SCF" , paste0("scf ",fullyear,".rds" ) ))

      for( i in 1:length(scf_imp)){

      scf_imp[[i]][["year"]] <- fullyear

      scf_imp[[i]] <- select(scf_imp[[i]],c("yy1","one","year","wgt","edcl","hhsex","age","married","kids","lf","lifecl",
      "networth","racecl4","racecl","occat1","income","norminc","wsaved",
      "spendmor","spendless","late","late60","hpayday","bshopnone",
      "bshopgrdl","bshopmodr","checking","hcheck",
      "saving","hsaving","mmda","cds","irakh","anypen","vehic","hvehic",
      "own","nown","newcar2","newcar1","veh_inst","hveh_inst","x7543","x7540",
      "x2206","x2209","x2210","x2211","x2212","x2213","x2219"))

      }

      scf_rw <- readRDS( file.path( path.expand( "~" ) , "SCF" , paste0("scf ",fullyear," rw.rds" ) ))

      #piecing together the dataframes
      #figure out a loop for this
      y1<- rbind(scf_imp[[1]],y1)
      y2<- rbind(scf_imp[[2]],y2)
      y3<- rbind(scf_imp[[3]],y3)
      y4<- rbind(scf_imp[[4]],y4)
      y5<- rbind(scf_imp[[5]],y5)

      rw <- rbind(scf_rw,rw)


      #include or exclude incrimental saving
      assign(paste0("scf_imp_",year),scf_imp)
      assign(paste0("scf_rw_",year),scf_rw)


      assign(paste0("scf_design_",year),
      svrepdesign(
      weights = ~wgt ,
      repweights = scf_rw[ , -1 ] ,
      data = imputationList( scf_imp ) ,
      scale = 1 ,
      rscales = rep( 1 / 998 , 999 ) ,
      mse = FALSE ,
      type = "other" ,
      combined.weights = TRUE
      ))

      rm(df1)
      rm(df2)
      rm(scf_imp)
      rm(scf_rw)
      }

      #piecing together the imputations
      imp <- list(y1,y2,y3,y4,y5)

      #creating the design using the set of 3 years
      design_full <- svrepdesign(
      weights = ~wgt ,
      repweights = rw[ , -1 ] ,
      data = imputationList( imp ) ,
      scale = 1 ,
      rscales = rep( 1 / 998 , 999 ) ,
      mse = FALSE ,
      type = "other" ,
      combined.weights = TRUE
      )





      share|improve this answer
























        0












        0








        0






        This is the answer that I have come up with after looking into what Anthony Damico commented:



        It follows the form of stacking the data frames within the list of imputations and the replicate weight files to ultimately combine them to the svyimputationList.



        scf_cat <-
        get_catalog( "scf" ,
        output_dir = file.path( path.expand( "~" ) , "SCF" ) )

        yearslist <- list(10,13,16)
        y1<- NULL
        y2<- NULL
        y3<- NULL
        y4<- NULL
        y5<- NULL
        imp <- NULL
        rw <- NULL
        #loop to load in the desired years and assign the weights
        for (i in 1:length(yearslist)){

        year <- yearslist[i]
        fullyear <- as.numeric(paste0("20",year))
        df1 = scf_cat[FALSE,]


        df1 <- subset( scf_cat , year == fullyear )
        df2 <- lodown( "scf" , df1)

        scf_imp <- readRDS( file.path( path.expand( "~" ) , "SCF" , paste0("scf ",fullyear,".rds" ) ))

        for( i in 1:length(scf_imp)){

        scf_imp[[i]][["year"]] <- fullyear

        scf_imp[[i]] <- select(scf_imp[[i]],c("yy1","one","year","wgt","edcl","hhsex","age","married","kids","lf","lifecl",
        "networth","racecl4","racecl","occat1","income","norminc","wsaved",
        "spendmor","spendless","late","late60","hpayday","bshopnone",
        "bshopgrdl","bshopmodr","checking","hcheck",
        "saving","hsaving","mmda","cds","irakh","anypen","vehic","hvehic",
        "own","nown","newcar2","newcar1","veh_inst","hveh_inst","x7543","x7540",
        "x2206","x2209","x2210","x2211","x2212","x2213","x2219"))

        }

        scf_rw <- readRDS( file.path( path.expand( "~" ) , "SCF" , paste0("scf ",fullyear," rw.rds" ) ))

        #piecing together the dataframes
        #figure out a loop for this
        y1<- rbind(scf_imp[[1]],y1)
        y2<- rbind(scf_imp[[2]],y2)
        y3<- rbind(scf_imp[[3]],y3)
        y4<- rbind(scf_imp[[4]],y4)
        y5<- rbind(scf_imp[[5]],y5)

        rw <- rbind(scf_rw,rw)


        #include or exclude incrimental saving
        assign(paste0("scf_imp_",year),scf_imp)
        assign(paste0("scf_rw_",year),scf_rw)


        assign(paste0("scf_design_",year),
        svrepdesign(
        weights = ~wgt ,
        repweights = scf_rw[ , -1 ] ,
        data = imputationList( scf_imp ) ,
        scale = 1 ,
        rscales = rep( 1 / 998 , 999 ) ,
        mse = FALSE ,
        type = "other" ,
        combined.weights = TRUE
        ))

        rm(df1)
        rm(df2)
        rm(scf_imp)
        rm(scf_rw)
        }

        #piecing together the imputations
        imp <- list(y1,y2,y3,y4,y5)

        #creating the design using the set of 3 years
        design_full <- svrepdesign(
        weights = ~wgt ,
        repweights = rw[ , -1 ] ,
        data = imputationList( imp ) ,
        scale = 1 ,
        rscales = rep( 1 / 998 , 999 ) ,
        mse = FALSE ,
        type = "other" ,
        combined.weights = TRUE
        )





        share|improve this answer












        This is the answer that I have come up with after looking into what Anthony Damico commented:



        It follows the form of stacking the data frames within the list of imputations and the replicate weight files to ultimately combine them to the svyimputationList.



        scf_cat <-
        get_catalog( "scf" ,
        output_dir = file.path( path.expand( "~" ) , "SCF" ) )

        yearslist <- list(10,13,16)
        y1<- NULL
        y2<- NULL
        y3<- NULL
        y4<- NULL
        y5<- NULL
        imp <- NULL
        rw <- NULL
        #loop to load in the desired years and assign the weights
        for (i in 1:length(yearslist)){

        year <- yearslist[i]
        fullyear <- as.numeric(paste0("20",year))
        df1 = scf_cat[FALSE,]


        df1 <- subset( scf_cat , year == fullyear )
        df2 <- lodown( "scf" , df1)

        scf_imp <- readRDS( file.path( path.expand( "~" ) , "SCF" , paste0("scf ",fullyear,".rds" ) ))

        for( i in 1:length(scf_imp)){

        scf_imp[[i]][["year"]] <- fullyear

        scf_imp[[i]] <- select(scf_imp[[i]],c("yy1","one","year","wgt","edcl","hhsex","age","married","kids","lf","lifecl",
        "networth","racecl4","racecl","occat1","income","norminc","wsaved",
        "spendmor","spendless","late","late60","hpayday","bshopnone",
        "bshopgrdl","bshopmodr","checking","hcheck",
        "saving","hsaving","mmda","cds","irakh","anypen","vehic","hvehic",
        "own","nown","newcar2","newcar1","veh_inst","hveh_inst","x7543","x7540",
        "x2206","x2209","x2210","x2211","x2212","x2213","x2219"))

        }

        scf_rw <- readRDS( file.path( path.expand( "~" ) , "SCF" , paste0("scf ",fullyear," rw.rds" ) ))

        #piecing together the dataframes
        #figure out a loop for this
        y1<- rbind(scf_imp[[1]],y1)
        y2<- rbind(scf_imp[[2]],y2)
        y3<- rbind(scf_imp[[3]],y3)
        y4<- rbind(scf_imp[[4]],y4)
        y5<- rbind(scf_imp[[5]],y5)

        rw <- rbind(scf_rw,rw)


        #include or exclude incrimental saving
        assign(paste0("scf_imp_",year),scf_imp)
        assign(paste0("scf_rw_",year),scf_rw)


        assign(paste0("scf_design_",year),
        svrepdesign(
        weights = ~wgt ,
        repweights = scf_rw[ , -1 ] ,
        data = imputationList( scf_imp ) ,
        scale = 1 ,
        rscales = rep( 1 / 998 , 999 ) ,
        mse = FALSE ,
        type = "other" ,
        combined.weights = TRUE
        ))

        rm(df1)
        rm(df2)
        rm(scf_imp)
        rm(scf_rw)
        }

        #piecing together the imputations
        imp <- list(y1,y2,y3,y4,y5)

        #creating the design using the set of 3 years
        design_full <- svrepdesign(
        weights = ~wgt ,
        repweights = rw[ , -1 ] ,
        data = imputationList( imp ) ,
        scale = 1 ,
        rscales = rep( 1 / 998 , 999 ) ,
        mse = FALSE ,
        type = "other" ,
        combined.weights = TRUE
        )






        share|improve this answer












        share|improve this answer



        share|improve this answer










        answered Dec 13 at 1:39









        E. Nicholson

        254




        254






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Stack Overflow!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53328683%2fcombining-svyimputationlists%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            mysqli_query(): Empty query in /home/lucindabrummitt/public_html/blog/wp-includes/wp-db.php on line 1924

            How to change which sound is reproduced for terminal bell?

            Can I use Tabulator js library in my java Spring + Thymeleaf project?