How do I find this eigenvector for a symmetric Matrix?
$begingroup$
I have a symmetric matrix A, whose eigenvalues are $lambda_1 = 6,~ lambda_2 = 3,~ lambda_3 = 2$ and eigenvectors are $vec{v_1} = (1, 1, 1),~vec{v_2} = (1,1,-1)$. How do I find the third eigenvector $vec{v_3}$?
matrices eigenvalues-eigenvectors symmetric-matrices
$endgroup$
add a comment |
$begingroup$
I have a symmetric matrix A, whose eigenvalues are $lambda_1 = 6,~ lambda_2 = 3,~ lambda_3 = 2$ and eigenvectors are $vec{v_1} = (1, 1, 1),~vec{v_2} = (1,1,-1)$. How do I find the third eigenvector $vec{v_3}$?
matrices eigenvalues-eigenvectors symmetric-matrices
$endgroup$
$begingroup$
Eigenvectors of distinct eigenvalues are pairwise orthogonal.
$endgroup$
– xbh
Dec 5 '18 at 10:46
add a comment |
$begingroup$
I have a symmetric matrix A, whose eigenvalues are $lambda_1 = 6,~ lambda_2 = 3,~ lambda_3 = 2$ and eigenvectors are $vec{v_1} = (1, 1, 1),~vec{v_2} = (1,1,-1)$. How do I find the third eigenvector $vec{v_3}$?
matrices eigenvalues-eigenvectors symmetric-matrices
$endgroup$
I have a symmetric matrix A, whose eigenvalues are $lambda_1 = 6,~ lambda_2 = 3,~ lambda_3 = 2$ and eigenvectors are $vec{v_1} = (1, 1, 1),~vec{v_2} = (1,1,-1)$. How do I find the third eigenvector $vec{v_3}$?
matrices eigenvalues-eigenvectors symmetric-matrices
matrices eigenvalues-eigenvectors symmetric-matrices
asked Dec 5 '18 at 10:45
Henri SödergårdHenri Södergård
1
1
$begingroup$
Eigenvectors of distinct eigenvalues are pairwise orthogonal.
$endgroup$
– xbh
Dec 5 '18 at 10:46
add a comment |
$begingroup$
Eigenvectors of distinct eigenvalues are pairwise orthogonal.
$endgroup$
– xbh
Dec 5 '18 at 10:46
$begingroup$
Eigenvectors of distinct eigenvalues are pairwise orthogonal.
$endgroup$
– xbh
Dec 5 '18 at 10:46
$begingroup$
Eigenvectors of distinct eigenvalues are pairwise orthogonal.
$endgroup$
– xbh
Dec 5 '18 at 10:46
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Hint: Since the matrix is symmetric, (and real, I presume) it has an orthogonal basis of eigenvectors.
$endgroup$
$begingroup$
But how do I use this in practice?
$endgroup$
– Henri Södergård
Dec 5 '18 at 11:08
$begingroup$
By searching for a vector orthogonal to both $vec{v_1}$ and $vec{v_2}$.
$endgroup$
– José Carlos Santos
Dec 5 '18 at 11:15
$begingroup$
So, it would be okay to take the cross-product of both vectors, as in $vec{v_3} = vec{v_1} times vec{v_2}$ and the resulting $vec{v_3} = (-3,3,0)$ would be what I'm looking for?
$endgroup$
– Henri Södergård
Dec 5 '18 at 11:23
$begingroup$
Yes, indeed it is.
$endgroup$
– José Carlos Santos
Dec 5 '18 at 11:24
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3026924%2fhow-do-i-find-this-eigenvector-for-a-symmetric-matrix%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint: Since the matrix is symmetric, (and real, I presume) it has an orthogonal basis of eigenvectors.
$endgroup$
$begingroup$
But how do I use this in practice?
$endgroup$
– Henri Södergård
Dec 5 '18 at 11:08
$begingroup$
By searching for a vector orthogonal to both $vec{v_1}$ and $vec{v_2}$.
$endgroup$
– José Carlos Santos
Dec 5 '18 at 11:15
$begingroup$
So, it would be okay to take the cross-product of both vectors, as in $vec{v_3} = vec{v_1} times vec{v_2}$ and the resulting $vec{v_3} = (-3,3,0)$ would be what I'm looking for?
$endgroup$
– Henri Södergård
Dec 5 '18 at 11:23
$begingroup$
Yes, indeed it is.
$endgroup$
– José Carlos Santos
Dec 5 '18 at 11:24
add a comment |
$begingroup$
Hint: Since the matrix is symmetric, (and real, I presume) it has an orthogonal basis of eigenvectors.
$endgroup$
$begingroup$
But how do I use this in practice?
$endgroup$
– Henri Södergård
Dec 5 '18 at 11:08
$begingroup$
By searching for a vector orthogonal to both $vec{v_1}$ and $vec{v_2}$.
$endgroup$
– José Carlos Santos
Dec 5 '18 at 11:15
$begingroup$
So, it would be okay to take the cross-product of both vectors, as in $vec{v_3} = vec{v_1} times vec{v_2}$ and the resulting $vec{v_3} = (-3,3,0)$ would be what I'm looking for?
$endgroup$
– Henri Södergård
Dec 5 '18 at 11:23
$begingroup$
Yes, indeed it is.
$endgroup$
– José Carlos Santos
Dec 5 '18 at 11:24
add a comment |
$begingroup$
Hint: Since the matrix is symmetric, (and real, I presume) it has an orthogonal basis of eigenvectors.
$endgroup$
Hint: Since the matrix is symmetric, (and real, I presume) it has an orthogonal basis of eigenvectors.
answered Dec 5 '18 at 10:46
José Carlos SantosJosé Carlos Santos
164k22132235
164k22132235
$begingroup$
But how do I use this in practice?
$endgroup$
– Henri Södergård
Dec 5 '18 at 11:08
$begingroup$
By searching for a vector orthogonal to both $vec{v_1}$ and $vec{v_2}$.
$endgroup$
– José Carlos Santos
Dec 5 '18 at 11:15
$begingroup$
So, it would be okay to take the cross-product of both vectors, as in $vec{v_3} = vec{v_1} times vec{v_2}$ and the resulting $vec{v_3} = (-3,3,0)$ would be what I'm looking for?
$endgroup$
– Henri Södergård
Dec 5 '18 at 11:23
$begingroup$
Yes, indeed it is.
$endgroup$
– José Carlos Santos
Dec 5 '18 at 11:24
add a comment |
$begingroup$
But how do I use this in practice?
$endgroup$
– Henri Södergård
Dec 5 '18 at 11:08
$begingroup$
By searching for a vector orthogonal to both $vec{v_1}$ and $vec{v_2}$.
$endgroup$
– José Carlos Santos
Dec 5 '18 at 11:15
$begingroup$
So, it would be okay to take the cross-product of both vectors, as in $vec{v_3} = vec{v_1} times vec{v_2}$ and the resulting $vec{v_3} = (-3,3,0)$ would be what I'm looking for?
$endgroup$
– Henri Södergård
Dec 5 '18 at 11:23
$begingroup$
Yes, indeed it is.
$endgroup$
– José Carlos Santos
Dec 5 '18 at 11:24
$begingroup$
But how do I use this in practice?
$endgroup$
– Henri Södergård
Dec 5 '18 at 11:08
$begingroup$
But how do I use this in practice?
$endgroup$
– Henri Södergård
Dec 5 '18 at 11:08
$begingroup$
By searching for a vector orthogonal to both $vec{v_1}$ and $vec{v_2}$.
$endgroup$
– José Carlos Santos
Dec 5 '18 at 11:15
$begingroup$
By searching for a vector orthogonal to both $vec{v_1}$ and $vec{v_2}$.
$endgroup$
– José Carlos Santos
Dec 5 '18 at 11:15
$begingroup$
So, it would be okay to take the cross-product of both vectors, as in $vec{v_3} = vec{v_1} times vec{v_2}$ and the resulting $vec{v_3} = (-3,3,0)$ would be what I'm looking for?
$endgroup$
– Henri Södergård
Dec 5 '18 at 11:23
$begingroup$
So, it would be okay to take the cross-product of both vectors, as in $vec{v_3} = vec{v_1} times vec{v_2}$ and the resulting $vec{v_3} = (-3,3,0)$ would be what I'm looking for?
$endgroup$
– Henri Södergård
Dec 5 '18 at 11:23
$begingroup$
Yes, indeed it is.
$endgroup$
– José Carlos Santos
Dec 5 '18 at 11:24
$begingroup$
Yes, indeed it is.
$endgroup$
– José Carlos Santos
Dec 5 '18 at 11:24
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3026924%2fhow-do-i-find-this-eigenvector-for-a-symmetric-matrix%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Eigenvectors of distinct eigenvalues are pairwise orthogonal.
$endgroup$
– xbh
Dec 5 '18 at 10:46