$sqrt{24ab+25}+sqrt{24bc+25}+sqrt{24ca+25}geq 21$ if $a+b+c=ab+bc+ca$?
$begingroup$
For $a,b,c>0 $ and $a+b+c=ab+bc+ca$ . Prove or disprove that : $sqrt{24ab+25}+sqrt{24bc+25}+sqrt{24ca+25}geq 21$
I checked in very many cases. Example :$c=1,
a=2,b=frac{1}{2}...$ then it’s true, but cannot prove that
My attempts:
I consider function $ f(x)=sqrt{24x^2+25}$
And $f’(x)=frac{24x}{sqrt{24x^2+25}}$,
$f’’(x)=frac{600}{(24x^2+25)(sqrt{24x^2+25}}>0$.
So $f(x)+f(y)+f(z)geq 3f(frac{x+y+z}{3})$.
But cannot prove that $sqrt{ab}+sqrt{bc}
+sqrt{ca}geq 3$
inequality contest-math radicals substitution uvw
$endgroup$
add a comment |
$begingroup$
For $a,b,c>0 $ and $a+b+c=ab+bc+ca$ . Prove or disprove that : $sqrt{24ab+25}+sqrt{24bc+25}+sqrt{24ca+25}geq 21$
I checked in very many cases. Example :$c=1,
a=2,b=frac{1}{2}...$ then it’s true, but cannot prove that
My attempts:
I consider function $ f(x)=sqrt{24x^2+25}$
And $f’(x)=frac{24x}{sqrt{24x^2+25}}$,
$f’’(x)=frac{600}{(24x^2+25)(sqrt{24x^2+25}}>0$.
So $f(x)+f(y)+f(z)geq 3f(frac{x+y+z}{3})$.
But cannot prove that $sqrt{ab}+sqrt{bc}
+sqrt{ca}geq 3$
inequality contest-math radicals substitution uvw
$endgroup$
$begingroup$
Consider $a=2,b=2, cto 0^+ implies sqrt{ab} + sqrt{bc}+sqrt{ca} to 2$...
$endgroup$
– Macavity
Feb 3 at 8:59
$begingroup$
@Macavity, if $a=2,b=2$, then $c=0not >0$ from the given constraint. Better if $a=b=1.99$ and $capprox 0.007$, then $sqrt{ab}+sqrt{bc}+sqrt{ca}approx 2.22<3$.
$endgroup$
– farruhota
Feb 3 at 9:16
add a comment |
$begingroup$
For $a,b,c>0 $ and $a+b+c=ab+bc+ca$ . Prove or disprove that : $sqrt{24ab+25}+sqrt{24bc+25}+sqrt{24ca+25}geq 21$
I checked in very many cases. Example :$c=1,
a=2,b=frac{1}{2}...$ then it’s true, but cannot prove that
My attempts:
I consider function $ f(x)=sqrt{24x^2+25}$
And $f’(x)=frac{24x}{sqrt{24x^2+25}}$,
$f’’(x)=frac{600}{(24x^2+25)(sqrt{24x^2+25}}>0$.
So $f(x)+f(y)+f(z)geq 3f(frac{x+y+z}{3})$.
But cannot prove that $sqrt{ab}+sqrt{bc}
+sqrt{ca}geq 3$
inequality contest-math radicals substitution uvw
$endgroup$
For $a,b,c>0 $ and $a+b+c=ab+bc+ca$ . Prove or disprove that : $sqrt{24ab+25}+sqrt{24bc+25}+sqrt{24ca+25}geq 21$
I checked in very many cases. Example :$c=1,
a=2,b=frac{1}{2}...$ then it’s true, but cannot prove that
My attempts:
I consider function $ f(x)=sqrt{24x^2+25}$
And $f’(x)=frac{24x}{sqrt{24x^2+25}}$,
$f’’(x)=frac{600}{(24x^2+25)(sqrt{24x^2+25}}>0$.
So $f(x)+f(y)+f(z)geq 3f(frac{x+y+z}{3})$.
But cannot prove that $sqrt{ab}+sqrt{bc}
+sqrt{ca}geq 3$
inequality contest-math radicals substitution uvw
inequality contest-math radicals substitution uvw
edited Feb 3 at 14:04
user21820
38.9k543153
38.9k543153
asked Feb 3 at 7:19
Hai SmitHai Smit
627
627
$begingroup$
Consider $a=2,b=2, cto 0^+ implies sqrt{ab} + sqrt{bc}+sqrt{ca} to 2$...
$endgroup$
– Macavity
Feb 3 at 8:59
$begingroup$
@Macavity, if $a=2,b=2$, then $c=0not >0$ from the given constraint. Better if $a=b=1.99$ and $capprox 0.007$, then $sqrt{ab}+sqrt{bc}+sqrt{ca}approx 2.22<3$.
$endgroup$
– farruhota
Feb 3 at 9:16
add a comment |
$begingroup$
Consider $a=2,b=2, cto 0^+ implies sqrt{ab} + sqrt{bc}+sqrt{ca} to 2$...
$endgroup$
– Macavity
Feb 3 at 8:59
$begingroup$
@Macavity, if $a=2,b=2$, then $c=0not >0$ from the given constraint. Better if $a=b=1.99$ and $capprox 0.007$, then $sqrt{ab}+sqrt{bc}+sqrt{ca}approx 2.22<3$.
$endgroup$
– farruhota
Feb 3 at 9:16
$begingroup$
Consider $a=2,b=2, cto 0^+ implies sqrt{ab} + sqrt{bc}+sqrt{ca} to 2$...
$endgroup$
– Macavity
Feb 3 at 8:59
$begingroup$
Consider $a=2,b=2, cto 0^+ implies sqrt{ab} + sqrt{bc}+sqrt{ca} to 2$...
$endgroup$
– Macavity
Feb 3 at 8:59
$begingroup$
@Macavity, if $a=2,b=2$, then $c=0not >0$ from the given constraint. Better if $a=b=1.99$ and $capprox 0.007$, then $sqrt{ab}+sqrt{bc}+sqrt{ca}approx 2.22<3$.
$endgroup$
– farruhota
Feb 3 at 9:16
$begingroup$
@Macavity, if $a=2,b=2$, then $c=0not >0$ from the given constraint. Better if $a=b=1.99$ and $capprox 0.007$, then $sqrt{ab}+sqrt{bc}+sqrt{ca}approx 2.22<3$.
$endgroup$
– farruhota
Feb 3 at 9:16
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Let $$sumlimits_{cyc}sqrt{24ab+25}<21,$$ $a=kx$, $b=ky$ and $c=kz$ such that $k>0$ and $$sum_{cyc}sqrt{24xy+25}=21.$$
Thus,
$$sum_{cyc}sqrt{24k^2xy+25}<21=sum_{cyc}sqrt{24xy+25}$$ or
$$sum_{cyc}frac{(k^2-1)xy}{sqrt{24k^2xy+25}+sqrt{24xy+25}}<0$$ or
$$(k^2-1)sum_{cyc}frac{xy}{sqrt{24k^2xy+25}+sqrt{24xy+25}}<0,$$ which gives $$0<k<1.$$
But the condition gives $$x+y+z=k(xy+xz+yz)<xy+xz+yz,$$
which is a contradiction because we'll prove now that $$x+y+zgeq xy+xz+yz.$$
Indeed, let $yz=frac{p^2+5p}{6},$ $xz=frac{q^2+5q}{6}$ and $xy=frac{r^2+5r}{6},$ where $p$, $q$ and $r$ are positives.
Thus, $$sum_{cyc}sqrt{4(p^2+5p)+25}=21$$ or
$$p+q+r=3$$ and since $$x=sqrt{frac{frac{q^2+5q}{6}cdotfrac{r^2+5r}{6}}{frac{p^2+5p}{6}}}=sqrt{frac{(q^2+5q)(r^2+5r)}{6(p^2+5p)}},$$ we need to prove that
$$sum_{cyc}sqrt{frac{(q^2+5q)(r^2+5r)}{6(p^2+5p)}}geqsum_{cyc}frac{p^2+5p}{6}$$ or
$$sqrt6sum_{cyc}(p^2+5p)(q^2+5q)geqsum_{cyc}(p^2+5p)sqrt{pqrprod_{cyc}(p+5)}.$$
Now, let $p+q+r=3u$, $pq+pr+qr=3v^2$ and $pqr=w^3$.
Thus, we need to prove that
$$sqrt6sum_{cyc}(p^2q^2+5p^2q+5p^2r+25pq)geq$$
$$geqsum_{cyc}(p^2+5)sqrt{w^3(pqr+5(pq+pr+qr)+25(p+q+r)+125)}$$ or
$$sqrt6(9v^4-6uw^3+5(9uv^2-3w^3)u+75u^2v^2)geq$$
$$geq(9u^2-6v^2+15u^2)sqrt{w^3(w^3+15uv^2+75u^3+125u^3)}$$ or $f(w^3)geq0,$ where
$$f(w^3)=sqrt3(40u^2v^2+3v^4-7uw^3)u-sqrt2(4u^2-v^2)sqrt{w^3(200u^3+15uv^2+w^3)}.$$
We see that $f$ decreases, which says that it's enough to prove the last inequality for the maximal value of $w^3$, which happens for equality case of two variables.
Now, let $q=p$ and $r=3-2p$, where $0<p<frac{3}{2}$ and after squaring of the both sides we need to prove that
$$p^3(p-1)^2(p+5)^2(224-165p+60p^2-8p^3)geq0,$$ which is true because
$$224-165p+60p^2-8p^3=224-165p+48p^2+4p^2(3-2p)geq224-165p+48p^2>0.$$
Done!
$endgroup$
1
$begingroup$
too great . You are very well . Happy a day
$endgroup$
– Hai Smit
Feb 3 at 10:25
add a comment |
$begingroup$
I consider function $ f(x)=sqrt{24x^2+25}$
And $f’(x)=frac{24x}{sqrt{24x^2+25}}$,
$f’’(x)=frac{600}{(24x^2+25)sqrt{24x^2+25}}>0$
So $f(x)+f(y)+f(z)geq 3f(frac{x+y+z}{3})$
(inequalyti Jensen’s)
But can not prove that $sqrt{ab}+sqrt{bc}
+sqrt{ca}geq 3$
$endgroup$
add a comment |
$begingroup$
What are the allowed values of $a,b,c$? If they are integers greater than zero then how about this:
Firstly $a = b = c = 1$ meets your constraint, and with these values $3sqrt{24 +25} = 21$
By my assumption that they are positive integers any valid $a,b$ would satisfy $sqrt{24ab + 25} ge sqrt{24 + 25} = 7$
And since the problem is symmetric in $a,b,c$, we can say that
$sqrt{24ab+25} + sqrt{24bc + 25} + sqrt{24ca + 25} ge sqrt{24+25} + sqrt{24+25} + sqrt{24+25} = 21$
$endgroup$
$begingroup$
$ a,b,c>0 $ and can not integers
$endgroup$
– Hai Smit
Feb 3 at 8:57
$begingroup$
Ok. By 'can not' I guess you mean that non-integer values are allowed.
$endgroup$
– mrblewog
Feb 3 at 9:00
1
$begingroup$
Example $a=2,c=1, b=frac{1}{2}$ then $LHS=21,626>21$
$endgroup$
– Hai Smit
Feb 3 at 9:04
$begingroup$
Yup, your example is fine.
$endgroup$
– mrblewog
Feb 3 at 9:05
$begingroup$
So has @farruhota provided you with a counterexample when some of $a,b,c$ are non-integer?
$endgroup$
– mrblewog
Feb 3 at 9:18
|
show 2 more comments
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3098290%2fsqrt24ab25-sqrt24bc25-sqrt24ca25-geq-21-if-abc-abbcca%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $$sumlimits_{cyc}sqrt{24ab+25}<21,$$ $a=kx$, $b=ky$ and $c=kz$ such that $k>0$ and $$sum_{cyc}sqrt{24xy+25}=21.$$
Thus,
$$sum_{cyc}sqrt{24k^2xy+25}<21=sum_{cyc}sqrt{24xy+25}$$ or
$$sum_{cyc}frac{(k^2-1)xy}{sqrt{24k^2xy+25}+sqrt{24xy+25}}<0$$ or
$$(k^2-1)sum_{cyc}frac{xy}{sqrt{24k^2xy+25}+sqrt{24xy+25}}<0,$$ which gives $$0<k<1.$$
But the condition gives $$x+y+z=k(xy+xz+yz)<xy+xz+yz,$$
which is a contradiction because we'll prove now that $$x+y+zgeq xy+xz+yz.$$
Indeed, let $yz=frac{p^2+5p}{6},$ $xz=frac{q^2+5q}{6}$ and $xy=frac{r^2+5r}{6},$ where $p$, $q$ and $r$ are positives.
Thus, $$sum_{cyc}sqrt{4(p^2+5p)+25}=21$$ or
$$p+q+r=3$$ and since $$x=sqrt{frac{frac{q^2+5q}{6}cdotfrac{r^2+5r}{6}}{frac{p^2+5p}{6}}}=sqrt{frac{(q^2+5q)(r^2+5r)}{6(p^2+5p)}},$$ we need to prove that
$$sum_{cyc}sqrt{frac{(q^2+5q)(r^2+5r)}{6(p^2+5p)}}geqsum_{cyc}frac{p^2+5p}{6}$$ or
$$sqrt6sum_{cyc}(p^2+5p)(q^2+5q)geqsum_{cyc}(p^2+5p)sqrt{pqrprod_{cyc}(p+5)}.$$
Now, let $p+q+r=3u$, $pq+pr+qr=3v^2$ and $pqr=w^3$.
Thus, we need to prove that
$$sqrt6sum_{cyc}(p^2q^2+5p^2q+5p^2r+25pq)geq$$
$$geqsum_{cyc}(p^2+5)sqrt{w^3(pqr+5(pq+pr+qr)+25(p+q+r)+125)}$$ or
$$sqrt6(9v^4-6uw^3+5(9uv^2-3w^3)u+75u^2v^2)geq$$
$$geq(9u^2-6v^2+15u^2)sqrt{w^3(w^3+15uv^2+75u^3+125u^3)}$$ or $f(w^3)geq0,$ where
$$f(w^3)=sqrt3(40u^2v^2+3v^4-7uw^3)u-sqrt2(4u^2-v^2)sqrt{w^3(200u^3+15uv^2+w^3)}.$$
We see that $f$ decreases, which says that it's enough to prove the last inequality for the maximal value of $w^3$, which happens for equality case of two variables.
Now, let $q=p$ and $r=3-2p$, where $0<p<frac{3}{2}$ and after squaring of the both sides we need to prove that
$$p^3(p-1)^2(p+5)^2(224-165p+60p^2-8p^3)geq0,$$ which is true because
$$224-165p+60p^2-8p^3=224-165p+48p^2+4p^2(3-2p)geq224-165p+48p^2>0.$$
Done!
$endgroup$
1
$begingroup$
too great . You are very well . Happy a day
$endgroup$
– Hai Smit
Feb 3 at 10:25
add a comment |
$begingroup$
Let $$sumlimits_{cyc}sqrt{24ab+25}<21,$$ $a=kx$, $b=ky$ and $c=kz$ such that $k>0$ and $$sum_{cyc}sqrt{24xy+25}=21.$$
Thus,
$$sum_{cyc}sqrt{24k^2xy+25}<21=sum_{cyc}sqrt{24xy+25}$$ or
$$sum_{cyc}frac{(k^2-1)xy}{sqrt{24k^2xy+25}+sqrt{24xy+25}}<0$$ or
$$(k^2-1)sum_{cyc}frac{xy}{sqrt{24k^2xy+25}+sqrt{24xy+25}}<0,$$ which gives $$0<k<1.$$
But the condition gives $$x+y+z=k(xy+xz+yz)<xy+xz+yz,$$
which is a contradiction because we'll prove now that $$x+y+zgeq xy+xz+yz.$$
Indeed, let $yz=frac{p^2+5p}{6},$ $xz=frac{q^2+5q}{6}$ and $xy=frac{r^2+5r}{6},$ where $p$, $q$ and $r$ are positives.
Thus, $$sum_{cyc}sqrt{4(p^2+5p)+25}=21$$ or
$$p+q+r=3$$ and since $$x=sqrt{frac{frac{q^2+5q}{6}cdotfrac{r^2+5r}{6}}{frac{p^2+5p}{6}}}=sqrt{frac{(q^2+5q)(r^2+5r)}{6(p^2+5p)}},$$ we need to prove that
$$sum_{cyc}sqrt{frac{(q^2+5q)(r^2+5r)}{6(p^2+5p)}}geqsum_{cyc}frac{p^2+5p}{6}$$ or
$$sqrt6sum_{cyc}(p^2+5p)(q^2+5q)geqsum_{cyc}(p^2+5p)sqrt{pqrprod_{cyc}(p+5)}.$$
Now, let $p+q+r=3u$, $pq+pr+qr=3v^2$ and $pqr=w^3$.
Thus, we need to prove that
$$sqrt6sum_{cyc}(p^2q^2+5p^2q+5p^2r+25pq)geq$$
$$geqsum_{cyc}(p^2+5)sqrt{w^3(pqr+5(pq+pr+qr)+25(p+q+r)+125)}$$ or
$$sqrt6(9v^4-6uw^3+5(9uv^2-3w^3)u+75u^2v^2)geq$$
$$geq(9u^2-6v^2+15u^2)sqrt{w^3(w^3+15uv^2+75u^3+125u^3)}$$ or $f(w^3)geq0,$ where
$$f(w^3)=sqrt3(40u^2v^2+3v^4-7uw^3)u-sqrt2(4u^2-v^2)sqrt{w^3(200u^3+15uv^2+w^3)}.$$
We see that $f$ decreases, which says that it's enough to prove the last inequality for the maximal value of $w^3$, which happens for equality case of two variables.
Now, let $q=p$ and $r=3-2p$, where $0<p<frac{3}{2}$ and after squaring of the both sides we need to prove that
$$p^3(p-1)^2(p+5)^2(224-165p+60p^2-8p^3)geq0,$$ which is true because
$$224-165p+60p^2-8p^3=224-165p+48p^2+4p^2(3-2p)geq224-165p+48p^2>0.$$
Done!
$endgroup$
1
$begingroup$
too great . You are very well . Happy a day
$endgroup$
– Hai Smit
Feb 3 at 10:25
add a comment |
$begingroup$
Let $$sumlimits_{cyc}sqrt{24ab+25}<21,$$ $a=kx$, $b=ky$ and $c=kz$ such that $k>0$ and $$sum_{cyc}sqrt{24xy+25}=21.$$
Thus,
$$sum_{cyc}sqrt{24k^2xy+25}<21=sum_{cyc}sqrt{24xy+25}$$ or
$$sum_{cyc}frac{(k^2-1)xy}{sqrt{24k^2xy+25}+sqrt{24xy+25}}<0$$ or
$$(k^2-1)sum_{cyc}frac{xy}{sqrt{24k^2xy+25}+sqrt{24xy+25}}<0,$$ which gives $$0<k<1.$$
But the condition gives $$x+y+z=k(xy+xz+yz)<xy+xz+yz,$$
which is a contradiction because we'll prove now that $$x+y+zgeq xy+xz+yz.$$
Indeed, let $yz=frac{p^2+5p}{6},$ $xz=frac{q^2+5q}{6}$ and $xy=frac{r^2+5r}{6},$ where $p$, $q$ and $r$ are positives.
Thus, $$sum_{cyc}sqrt{4(p^2+5p)+25}=21$$ or
$$p+q+r=3$$ and since $$x=sqrt{frac{frac{q^2+5q}{6}cdotfrac{r^2+5r}{6}}{frac{p^2+5p}{6}}}=sqrt{frac{(q^2+5q)(r^2+5r)}{6(p^2+5p)}},$$ we need to prove that
$$sum_{cyc}sqrt{frac{(q^2+5q)(r^2+5r)}{6(p^2+5p)}}geqsum_{cyc}frac{p^2+5p}{6}$$ or
$$sqrt6sum_{cyc}(p^2+5p)(q^2+5q)geqsum_{cyc}(p^2+5p)sqrt{pqrprod_{cyc}(p+5)}.$$
Now, let $p+q+r=3u$, $pq+pr+qr=3v^2$ and $pqr=w^3$.
Thus, we need to prove that
$$sqrt6sum_{cyc}(p^2q^2+5p^2q+5p^2r+25pq)geq$$
$$geqsum_{cyc}(p^2+5)sqrt{w^3(pqr+5(pq+pr+qr)+25(p+q+r)+125)}$$ or
$$sqrt6(9v^4-6uw^3+5(9uv^2-3w^3)u+75u^2v^2)geq$$
$$geq(9u^2-6v^2+15u^2)sqrt{w^3(w^3+15uv^2+75u^3+125u^3)}$$ or $f(w^3)geq0,$ where
$$f(w^3)=sqrt3(40u^2v^2+3v^4-7uw^3)u-sqrt2(4u^2-v^2)sqrt{w^3(200u^3+15uv^2+w^3)}.$$
We see that $f$ decreases, which says that it's enough to prove the last inequality for the maximal value of $w^3$, which happens for equality case of two variables.
Now, let $q=p$ and $r=3-2p$, where $0<p<frac{3}{2}$ and after squaring of the both sides we need to prove that
$$p^3(p-1)^2(p+5)^2(224-165p+60p^2-8p^3)geq0,$$ which is true because
$$224-165p+60p^2-8p^3=224-165p+48p^2+4p^2(3-2p)geq224-165p+48p^2>0.$$
Done!
$endgroup$
Let $$sumlimits_{cyc}sqrt{24ab+25}<21,$$ $a=kx$, $b=ky$ and $c=kz$ such that $k>0$ and $$sum_{cyc}sqrt{24xy+25}=21.$$
Thus,
$$sum_{cyc}sqrt{24k^2xy+25}<21=sum_{cyc}sqrt{24xy+25}$$ or
$$sum_{cyc}frac{(k^2-1)xy}{sqrt{24k^2xy+25}+sqrt{24xy+25}}<0$$ or
$$(k^2-1)sum_{cyc}frac{xy}{sqrt{24k^2xy+25}+sqrt{24xy+25}}<0,$$ which gives $$0<k<1.$$
But the condition gives $$x+y+z=k(xy+xz+yz)<xy+xz+yz,$$
which is a contradiction because we'll prove now that $$x+y+zgeq xy+xz+yz.$$
Indeed, let $yz=frac{p^2+5p}{6},$ $xz=frac{q^2+5q}{6}$ and $xy=frac{r^2+5r}{6},$ where $p$, $q$ and $r$ are positives.
Thus, $$sum_{cyc}sqrt{4(p^2+5p)+25}=21$$ or
$$p+q+r=3$$ and since $$x=sqrt{frac{frac{q^2+5q}{6}cdotfrac{r^2+5r}{6}}{frac{p^2+5p}{6}}}=sqrt{frac{(q^2+5q)(r^2+5r)}{6(p^2+5p)}},$$ we need to prove that
$$sum_{cyc}sqrt{frac{(q^2+5q)(r^2+5r)}{6(p^2+5p)}}geqsum_{cyc}frac{p^2+5p}{6}$$ or
$$sqrt6sum_{cyc}(p^2+5p)(q^2+5q)geqsum_{cyc}(p^2+5p)sqrt{pqrprod_{cyc}(p+5)}.$$
Now, let $p+q+r=3u$, $pq+pr+qr=3v^2$ and $pqr=w^3$.
Thus, we need to prove that
$$sqrt6sum_{cyc}(p^2q^2+5p^2q+5p^2r+25pq)geq$$
$$geqsum_{cyc}(p^2+5)sqrt{w^3(pqr+5(pq+pr+qr)+25(p+q+r)+125)}$$ or
$$sqrt6(9v^4-6uw^3+5(9uv^2-3w^3)u+75u^2v^2)geq$$
$$geq(9u^2-6v^2+15u^2)sqrt{w^3(w^3+15uv^2+75u^3+125u^3)}$$ or $f(w^3)geq0,$ where
$$f(w^3)=sqrt3(40u^2v^2+3v^4-7uw^3)u-sqrt2(4u^2-v^2)sqrt{w^3(200u^3+15uv^2+w^3)}.$$
We see that $f$ decreases, which says that it's enough to prove the last inequality for the maximal value of $w^3$, which happens for equality case of two variables.
Now, let $q=p$ and $r=3-2p$, where $0<p<frac{3}{2}$ and after squaring of the both sides we need to prove that
$$p^3(p-1)^2(p+5)^2(224-165p+60p^2-8p^3)geq0,$$ which is true because
$$224-165p+60p^2-8p^3=224-165p+48p^2+4p^2(3-2p)geq224-165p+48p^2>0.$$
Done!
edited Feb 3 at 10:42
answered Feb 3 at 10:05
Michael RozenbergMichael Rozenberg
103k1891195
103k1891195
1
$begingroup$
too great . You are very well . Happy a day
$endgroup$
– Hai Smit
Feb 3 at 10:25
add a comment |
1
$begingroup$
too great . You are very well . Happy a day
$endgroup$
– Hai Smit
Feb 3 at 10:25
1
1
$begingroup$
too great . You are very well . Happy a day
$endgroup$
– Hai Smit
Feb 3 at 10:25
$begingroup$
too great . You are very well . Happy a day
$endgroup$
– Hai Smit
Feb 3 at 10:25
add a comment |
$begingroup$
I consider function $ f(x)=sqrt{24x^2+25}$
And $f’(x)=frac{24x}{sqrt{24x^2+25}}$,
$f’’(x)=frac{600}{(24x^2+25)sqrt{24x^2+25}}>0$
So $f(x)+f(y)+f(z)geq 3f(frac{x+y+z}{3})$
(inequalyti Jensen’s)
But can not prove that $sqrt{ab}+sqrt{bc}
+sqrt{ca}geq 3$
$endgroup$
add a comment |
$begingroup$
I consider function $ f(x)=sqrt{24x^2+25}$
And $f’(x)=frac{24x}{sqrt{24x^2+25}}$,
$f’’(x)=frac{600}{(24x^2+25)sqrt{24x^2+25}}>0$
So $f(x)+f(y)+f(z)geq 3f(frac{x+y+z}{3})$
(inequalyti Jensen’s)
But can not prove that $sqrt{ab}+sqrt{bc}
+sqrt{ca}geq 3$
$endgroup$
add a comment |
$begingroup$
I consider function $ f(x)=sqrt{24x^2+25}$
And $f’(x)=frac{24x}{sqrt{24x^2+25}}$,
$f’’(x)=frac{600}{(24x^2+25)sqrt{24x^2+25}}>0$
So $f(x)+f(y)+f(z)geq 3f(frac{x+y+z}{3})$
(inequalyti Jensen’s)
But can not prove that $sqrt{ab}+sqrt{bc}
+sqrt{ca}geq 3$
$endgroup$
I consider function $ f(x)=sqrt{24x^2+25}$
And $f’(x)=frac{24x}{sqrt{24x^2+25}}$,
$f’’(x)=frac{600}{(24x^2+25)sqrt{24x^2+25}}>0$
So $f(x)+f(y)+f(z)geq 3f(frac{x+y+z}{3})$
(inequalyti Jensen’s)
But can not prove that $sqrt{ab}+sqrt{bc}
+sqrt{ca}geq 3$
edited Feb 3 at 8:27
answered Feb 3 at 8:21
Hai SmitHai Smit
627
627
add a comment |
add a comment |
$begingroup$
What are the allowed values of $a,b,c$? If they are integers greater than zero then how about this:
Firstly $a = b = c = 1$ meets your constraint, and with these values $3sqrt{24 +25} = 21$
By my assumption that they are positive integers any valid $a,b$ would satisfy $sqrt{24ab + 25} ge sqrt{24 + 25} = 7$
And since the problem is symmetric in $a,b,c$, we can say that
$sqrt{24ab+25} + sqrt{24bc + 25} + sqrt{24ca + 25} ge sqrt{24+25} + sqrt{24+25} + sqrt{24+25} = 21$
$endgroup$
$begingroup$
$ a,b,c>0 $ and can not integers
$endgroup$
– Hai Smit
Feb 3 at 8:57
$begingroup$
Ok. By 'can not' I guess you mean that non-integer values are allowed.
$endgroup$
– mrblewog
Feb 3 at 9:00
1
$begingroup$
Example $a=2,c=1, b=frac{1}{2}$ then $LHS=21,626>21$
$endgroup$
– Hai Smit
Feb 3 at 9:04
$begingroup$
Yup, your example is fine.
$endgroup$
– mrblewog
Feb 3 at 9:05
$begingroup$
So has @farruhota provided you with a counterexample when some of $a,b,c$ are non-integer?
$endgroup$
– mrblewog
Feb 3 at 9:18
|
show 2 more comments
$begingroup$
What are the allowed values of $a,b,c$? If they are integers greater than zero then how about this:
Firstly $a = b = c = 1$ meets your constraint, and with these values $3sqrt{24 +25} = 21$
By my assumption that they are positive integers any valid $a,b$ would satisfy $sqrt{24ab + 25} ge sqrt{24 + 25} = 7$
And since the problem is symmetric in $a,b,c$, we can say that
$sqrt{24ab+25} + sqrt{24bc + 25} + sqrt{24ca + 25} ge sqrt{24+25} + sqrt{24+25} + sqrt{24+25} = 21$
$endgroup$
$begingroup$
$ a,b,c>0 $ and can not integers
$endgroup$
– Hai Smit
Feb 3 at 8:57
$begingroup$
Ok. By 'can not' I guess you mean that non-integer values are allowed.
$endgroup$
– mrblewog
Feb 3 at 9:00
1
$begingroup$
Example $a=2,c=1, b=frac{1}{2}$ then $LHS=21,626>21$
$endgroup$
– Hai Smit
Feb 3 at 9:04
$begingroup$
Yup, your example is fine.
$endgroup$
– mrblewog
Feb 3 at 9:05
$begingroup$
So has @farruhota provided you with a counterexample when some of $a,b,c$ are non-integer?
$endgroup$
– mrblewog
Feb 3 at 9:18
|
show 2 more comments
$begingroup$
What are the allowed values of $a,b,c$? If they are integers greater than zero then how about this:
Firstly $a = b = c = 1$ meets your constraint, and with these values $3sqrt{24 +25} = 21$
By my assumption that they are positive integers any valid $a,b$ would satisfy $sqrt{24ab + 25} ge sqrt{24 + 25} = 7$
And since the problem is symmetric in $a,b,c$, we can say that
$sqrt{24ab+25} + sqrt{24bc + 25} + sqrt{24ca + 25} ge sqrt{24+25} + sqrt{24+25} + sqrt{24+25} = 21$
$endgroup$
What are the allowed values of $a,b,c$? If they are integers greater than zero then how about this:
Firstly $a = b = c = 1$ meets your constraint, and with these values $3sqrt{24 +25} = 21$
By my assumption that they are positive integers any valid $a,b$ would satisfy $sqrt{24ab + 25} ge sqrt{24 + 25} = 7$
And since the problem is symmetric in $a,b,c$, we can say that
$sqrt{24ab+25} + sqrt{24bc + 25} + sqrt{24ca + 25} ge sqrt{24+25} + sqrt{24+25} + sqrt{24+25} = 21$
answered Feb 3 at 8:52
mrblewogmrblewog
1626
1626
$begingroup$
$ a,b,c>0 $ and can not integers
$endgroup$
– Hai Smit
Feb 3 at 8:57
$begingroup$
Ok. By 'can not' I guess you mean that non-integer values are allowed.
$endgroup$
– mrblewog
Feb 3 at 9:00
1
$begingroup$
Example $a=2,c=1, b=frac{1}{2}$ then $LHS=21,626>21$
$endgroup$
– Hai Smit
Feb 3 at 9:04
$begingroup$
Yup, your example is fine.
$endgroup$
– mrblewog
Feb 3 at 9:05
$begingroup$
So has @farruhota provided you with a counterexample when some of $a,b,c$ are non-integer?
$endgroup$
– mrblewog
Feb 3 at 9:18
|
show 2 more comments
$begingroup$
$ a,b,c>0 $ and can not integers
$endgroup$
– Hai Smit
Feb 3 at 8:57
$begingroup$
Ok. By 'can not' I guess you mean that non-integer values are allowed.
$endgroup$
– mrblewog
Feb 3 at 9:00
1
$begingroup$
Example $a=2,c=1, b=frac{1}{2}$ then $LHS=21,626>21$
$endgroup$
– Hai Smit
Feb 3 at 9:04
$begingroup$
Yup, your example is fine.
$endgroup$
– mrblewog
Feb 3 at 9:05
$begingroup$
So has @farruhota provided you with a counterexample when some of $a,b,c$ are non-integer?
$endgroup$
– mrblewog
Feb 3 at 9:18
$begingroup$
$ a,b,c>0 $ and can not integers
$endgroup$
– Hai Smit
Feb 3 at 8:57
$begingroup$
$ a,b,c>0 $ and can not integers
$endgroup$
– Hai Smit
Feb 3 at 8:57
$begingroup$
Ok. By 'can not' I guess you mean that non-integer values are allowed.
$endgroup$
– mrblewog
Feb 3 at 9:00
$begingroup$
Ok. By 'can not' I guess you mean that non-integer values are allowed.
$endgroup$
– mrblewog
Feb 3 at 9:00
1
1
$begingroup$
Example $a=2,c=1, b=frac{1}{2}$ then $LHS=21,626>21$
$endgroup$
– Hai Smit
Feb 3 at 9:04
$begingroup$
Example $a=2,c=1, b=frac{1}{2}$ then $LHS=21,626>21$
$endgroup$
– Hai Smit
Feb 3 at 9:04
$begingroup$
Yup, your example is fine.
$endgroup$
– mrblewog
Feb 3 at 9:05
$begingroup$
Yup, your example is fine.
$endgroup$
– mrblewog
Feb 3 at 9:05
$begingroup$
So has @farruhota provided you with a counterexample when some of $a,b,c$ are non-integer?
$endgroup$
– mrblewog
Feb 3 at 9:18
$begingroup$
So has @farruhota provided you with a counterexample when some of $a,b,c$ are non-integer?
$endgroup$
– mrblewog
Feb 3 at 9:18
|
show 2 more comments
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3098290%2fsqrt24ab25-sqrt24bc25-sqrt24ca25-geq-21-if-abc-abbcca%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Consider $a=2,b=2, cto 0^+ implies sqrt{ab} + sqrt{bc}+sqrt{ca} to 2$...
$endgroup$
– Macavity
Feb 3 at 8:59
$begingroup$
@Macavity, if $a=2,b=2$, then $c=0not >0$ from the given constraint. Better if $a=b=1.99$ and $capprox 0.007$, then $sqrt{ab}+sqrt{bc}+sqrt{ca}approx 2.22<3$.
$endgroup$
– farruhota
Feb 3 at 9:16