$C^{infty}(mathbb{R})$ as a Fréchet space
$begingroup$
I think I'm misunderstanding what is being asked of me in the following question:
The space $C^{infty}(mathbb{R})$ has a Fréchet space topology with respect to which $f_n rightarrow f$ iff $f^{(k)}_n rightarrow f^{(k)}$ uniformly on all compact subsets ($k$, non-negative, is the order of derivative).
To show the backwards implication I need to show that convergence ($f^{(k)}_n rightarrow f^{(k)}$ uniformly on all compact subsets) give me seminorms, there are countably many such semi norms, and these seminorms give me a complete Hausdorff TVS. My book gives me some facts to help me in this direction.
I'm confused by the forward implication though - if endow the space of $C^{infty}(mathbb{R})$ with a topology given by countable seminorms which makes $C^{infty}(mathbb{R})$ a complete Hausdorff TVS -- how do I know this implies $f^{(k)}_n rightarrow f^{(k)}$ uniformly on all compact subsets? What if the seminorms are really strange and have nothing to do with the derivatives of $f$ over compact subsets?
real-analysis general-topology functional-analysis topological-vector-spaces
$endgroup$
add a comment |
$begingroup$
I think I'm misunderstanding what is being asked of me in the following question:
The space $C^{infty}(mathbb{R})$ has a Fréchet space topology with respect to which $f_n rightarrow f$ iff $f^{(k)}_n rightarrow f^{(k)}$ uniformly on all compact subsets ($k$, non-negative, is the order of derivative).
To show the backwards implication I need to show that convergence ($f^{(k)}_n rightarrow f^{(k)}$ uniformly on all compact subsets) give me seminorms, there are countably many such semi norms, and these seminorms give me a complete Hausdorff TVS. My book gives me some facts to help me in this direction.
I'm confused by the forward implication though - if endow the space of $C^{infty}(mathbb{R})$ with a topology given by countable seminorms which makes $C^{infty}(mathbb{R})$ a complete Hausdorff TVS -- how do I know this implies $f^{(k)}_n rightarrow f^{(k)}$ uniformly on all compact subsets? What if the seminorms are really strange and have nothing to do with the derivatives of $f$ over compact subsets?
real-analysis general-topology functional-analysis topological-vector-spaces
$endgroup$
1
$begingroup$
The seminirms are $p_{n,k}(f):= sup_{[-k,k]} |f^{(n)}|$. The key is that any compact set is contained in some interval $[-k,k]$
$endgroup$
– Tito Eliatron
Nov 30 '18 at 16:58
$begingroup$
I see that, but that's for a particular choice of seminorms. Why should it be true for any arbitrary countable family of seminorms though?
$endgroup$
– yoshi
Nov 30 '18 at 17:21
1
$begingroup$
For fixed k,n,m, The set ${p_{n,k}(f,0)<m}$ is open, so for your Family of seminorms, you can put a p- Bail inside.
$endgroup$
– Tito Eliatron
Nov 30 '18 at 17:31
$begingroup$
Can you elaborate on this statement, what is a p-ball and why is it suffient for one p-ball to be inside?
$endgroup$
– yoshi
Dec 1 '18 at 15:20
add a comment |
$begingroup$
I think I'm misunderstanding what is being asked of me in the following question:
The space $C^{infty}(mathbb{R})$ has a Fréchet space topology with respect to which $f_n rightarrow f$ iff $f^{(k)}_n rightarrow f^{(k)}$ uniformly on all compact subsets ($k$, non-negative, is the order of derivative).
To show the backwards implication I need to show that convergence ($f^{(k)}_n rightarrow f^{(k)}$ uniformly on all compact subsets) give me seminorms, there are countably many such semi norms, and these seminorms give me a complete Hausdorff TVS. My book gives me some facts to help me in this direction.
I'm confused by the forward implication though - if endow the space of $C^{infty}(mathbb{R})$ with a topology given by countable seminorms which makes $C^{infty}(mathbb{R})$ a complete Hausdorff TVS -- how do I know this implies $f^{(k)}_n rightarrow f^{(k)}$ uniformly on all compact subsets? What if the seminorms are really strange and have nothing to do with the derivatives of $f$ over compact subsets?
real-analysis general-topology functional-analysis topological-vector-spaces
$endgroup$
I think I'm misunderstanding what is being asked of me in the following question:
The space $C^{infty}(mathbb{R})$ has a Fréchet space topology with respect to which $f_n rightarrow f$ iff $f^{(k)}_n rightarrow f^{(k)}$ uniformly on all compact subsets ($k$, non-negative, is the order of derivative).
To show the backwards implication I need to show that convergence ($f^{(k)}_n rightarrow f^{(k)}$ uniformly on all compact subsets) give me seminorms, there are countably many such semi norms, and these seminorms give me a complete Hausdorff TVS. My book gives me some facts to help me in this direction.
I'm confused by the forward implication though - if endow the space of $C^{infty}(mathbb{R})$ with a topology given by countable seminorms which makes $C^{infty}(mathbb{R})$ a complete Hausdorff TVS -- how do I know this implies $f^{(k)}_n rightarrow f^{(k)}$ uniformly on all compact subsets? What if the seminorms are really strange and have nothing to do with the derivatives of $f$ over compact subsets?
real-analysis general-topology functional-analysis topological-vector-spaces
real-analysis general-topology functional-analysis topological-vector-spaces
edited Nov 30 '18 at 17:37
Bernard
121k740116
121k740116
asked Nov 30 '18 at 16:27
yoshiyoshi
1,196817
1,196817
1
$begingroup$
The seminirms are $p_{n,k}(f):= sup_{[-k,k]} |f^{(n)}|$. The key is that any compact set is contained in some interval $[-k,k]$
$endgroup$
– Tito Eliatron
Nov 30 '18 at 16:58
$begingroup$
I see that, but that's for a particular choice of seminorms. Why should it be true for any arbitrary countable family of seminorms though?
$endgroup$
– yoshi
Nov 30 '18 at 17:21
1
$begingroup$
For fixed k,n,m, The set ${p_{n,k}(f,0)<m}$ is open, so for your Family of seminorms, you can put a p- Bail inside.
$endgroup$
– Tito Eliatron
Nov 30 '18 at 17:31
$begingroup$
Can you elaborate on this statement, what is a p-ball and why is it suffient for one p-ball to be inside?
$endgroup$
– yoshi
Dec 1 '18 at 15:20
add a comment |
1
$begingroup$
The seminirms are $p_{n,k}(f):= sup_{[-k,k]} |f^{(n)}|$. The key is that any compact set is contained in some interval $[-k,k]$
$endgroup$
– Tito Eliatron
Nov 30 '18 at 16:58
$begingroup$
I see that, but that's for a particular choice of seminorms. Why should it be true for any arbitrary countable family of seminorms though?
$endgroup$
– yoshi
Nov 30 '18 at 17:21
1
$begingroup$
For fixed k,n,m, The set ${p_{n,k}(f,0)<m}$ is open, so for your Family of seminorms, you can put a p- Bail inside.
$endgroup$
– Tito Eliatron
Nov 30 '18 at 17:31
$begingroup$
Can you elaborate on this statement, what is a p-ball and why is it suffient for one p-ball to be inside?
$endgroup$
– yoshi
Dec 1 '18 at 15:20
1
1
$begingroup$
The seminirms are $p_{n,k}(f):= sup_{[-k,k]} |f^{(n)}|$. The key is that any compact set is contained in some interval $[-k,k]$
$endgroup$
– Tito Eliatron
Nov 30 '18 at 16:58
$begingroup$
The seminirms are $p_{n,k}(f):= sup_{[-k,k]} |f^{(n)}|$. The key is that any compact set is contained in some interval $[-k,k]$
$endgroup$
– Tito Eliatron
Nov 30 '18 at 16:58
$begingroup$
I see that, but that's for a particular choice of seminorms. Why should it be true for any arbitrary countable family of seminorms though?
$endgroup$
– yoshi
Nov 30 '18 at 17:21
$begingroup$
I see that, but that's for a particular choice of seminorms. Why should it be true for any arbitrary countable family of seminorms though?
$endgroup$
– yoshi
Nov 30 '18 at 17:21
1
1
$begingroup$
For fixed k,n,m, The set ${p_{n,k}(f,0)<m}$ is open, so for your Family of seminorms, you can put a p- Bail inside.
$endgroup$
– Tito Eliatron
Nov 30 '18 at 17:31
$begingroup$
For fixed k,n,m, The set ${p_{n,k}(f,0)<m}$ is open, so for your Family of seminorms, you can put a p- Bail inside.
$endgroup$
– Tito Eliatron
Nov 30 '18 at 17:31
$begingroup$
Can you elaborate on this statement, what is a p-ball and why is it suffient for one p-ball to be inside?
$endgroup$
– yoshi
Dec 1 '18 at 15:20
$begingroup$
Can you elaborate on this statement, what is a p-ball and why is it suffient for one p-ball to be inside?
$endgroup$
– yoshi
Dec 1 '18 at 15:20
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
The question doesn't exclude that there are different topologies on $C^infty(mathbb{R})$ such that $C^infty(mathbb{R})$ is a Frechet space with this topology. However, since the open mapping theorem is also true for Frechet spaces, we cannot have a finer (or weaker) topology (as the usual one) on $C^infty(mathbb{R})$ in which $C^infty(mathbb{R})$ is also a Frechet space and $f^{(k)}_n rightarrow f^{(k)}$ uniformly on compact sets for each $k in mathbb{N}$.
One can proof that $C^infty(mathbb{R})$ has dimension $2^{aleph_0}$ in the sense of Hamel basis. Thus you can take e.g. the Banach-space $L^1(mathbb{R})$ and transport the norm to $C^infty(mathbb{R})$. With these norm $C^infty(mathbb{R})$ is a Banach space. Since the topology of local convergence of all derivates is not normable, this weird topology is different than the usual one.
$endgroup$
$begingroup$
why does "no finer topology" follow from the open mapping theorem?
$endgroup$
– yoshi
Dec 1 '18 at 15:22
1
$begingroup$
If $tau_1$, $tau_2$ are topologies on $C^infty(mathbb{R})$ with $tau_1 subset tau_2$, i.e. $tau_2$ is finer than $tau_1$, then $mathrm{id} colon (C^infty(mathbb{R}),tau_2) rightarrow (C^infty(mathbb{R}),tau_1)$ the map is continuous. If both topologies are Frechet, then the open mapping theorem already implies that this map is open, i.e. the inverse map $mathrm{id} colon (C^infty(mathbb{R}),tau_1) rightarrow (C^infty(mathbb{R}),tau_2)$ is continuous and thus $tau_1 = tau_2$.
$endgroup$
– p4sch
Dec 1 '18 at 21:27
$begingroup$
I like this, but my only problem is that we haven't covered the open mapping theorem for Frechet spaces. Is there a way to adapt Tito Aliatron's hints into this? I'm looking through the proof of the open mapping theorem for Frechet spaces to see if I can do it too.
$endgroup$
– yoshi
Dec 1 '18 at 21:44
1
$begingroup$
I don't think that you can prove this much easier. It is a feature coming from the completeness of the space. You may have a look in Rudin's book on functional analysis. There you can find a proof of the open mapping theorem - that is Theorem 2.11. In fact, the idea of the proof is the same as in the case of banach spaces.
$endgroup$
– p4sch
Dec 2 '18 at 11:03
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3020286%2fc-infty-mathbbr-as-a-fr%25c3%25a9chet-space%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The question doesn't exclude that there are different topologies on $C^infty(mathbb{R})$ such that $C^infty(mathbb{R})$ is a Frechet space with this topology. However, since the open mapping theorem is also true for Frechet spaces, we cannot have a finer (or weaker) topology (as the usual one) on $C^infty(mathbb{R})$ in which $C^infty(mathbb{R})$ is also a Frechet space and $f^{(k)}_n rightarrow f^{(k)}$ uniformly on compact sets for each $k in mathbb{N}$.
One can proof that $C^infty(mathbb{R})$ has dimension $2^{aleph_0}$ in the sense of Hamel basis. Thus you can take e.g. the Banach-space $L^1(mathbb{R})$ and transport the norm to $C^infty(mathbb{R})$. With these norm $C^infty(mathbb{R})$ is a Banach space. Since the topology of local convergence of all derivates is not normable, this weird topology is different than the usual one.
$endgroup$
$begingroup$
why does "no finer topology" follow from the open mapping theorem?
$endgroup$
– yoshi
Dec 1 '18 at 15:22
1
$begingroup$
If $tau_1$, $tau_2$ are topologies on $C^infty(mathbb{R})$ with $tau_1 subset tau_2$, i.e. $tau_2$ is finer than $tau_1$, then $mathrm{id} colon (C^infty(mathbb{R}),tau_2) rightarrow (C^infty(mathbb{R}),tau_1)$ the map is continuous. If both topologies are Frechet, then the open mapping theorem already implies that this map is open, i.e. the inverse map $mathrm{id} colon (C^infty(mathbb{R}),tau_1) rightarrow (C^infty(mathbb{R}),tau_2)$ is continuous and thus $tau_1 = tau_2$.
$endgroup$
– p4sch
Dec 1 '18 at 21:27
$begingroup$
I like this, but my only problem is that we haven't covered the open mapping theorem for Frechet spaces. Is there a way to adapt Tito Aliatron's hints into this? I'm looking through the proof of the open mapping theorem for Frechet spaces to see if I can do it too.
$endgroup$
– yoshi
Dec 1 '18 at 21:44
1
$begingroup$
I don't think that you can prove this much easier. It is a feature coming from the completeness of the space. You may have a look in Rudin's book on functional analysis. There you can find a proof of the open mapping theorem - that is Theorem 2.11. In fact, the idea of the proof is the same as in the case of banach spaces.
$endgroup$
– p4sch
Dec 2 '18 at 11:03
add a comment |
$begingroup$
The question doesn't exclude that there are different topologies on $C^infty(mathbb{R})$ such that $C^infty(mathbb{R})$ is a Frechet space with this topology. However, since the open mapping theorem is also true for Frechet spaces, we cannot have a finer (or weaker) topology (as the usual one) on $C^infty(mathbb{R})$ in which $C^infty(mathbb{R})$ is also a Frechet space and $f^{(k)}_n rightarrow f^{(k)}$ uniformly on compact sets for each $k in mathbb{N}$.
One can proof that $C^infty(mathbb{R})$ has dimension $2^{aleph_0}$ in the sense of Hamel basis. Thus you can take e.g. the Banach-space $L^1(mathbb{R})$ and transport the norm to $C^infty(mathbb{R})$. With these norm $C^infty(mathbb{R})$ is a Banach space. Since the topology of local convergence of all derivates is not normable, this weird topology is different than the usual one.
$endgroup$
$begingroup$
why does "no finer topology" follow from the open mapping theorem?
$endgroup$
– yoshi
Dec 1 '18 at 15:22
1
$begingroup$
If $tau_1$, $tau_2$ are topologies on $C^infty(mathbb{R})$ with $tau_1 subset tau_2$, i.e. $tau_2$ is finer than $tau_1$, then $mathrm{id} colon (C^infty(mathbb{R}),tau_2) rightarrow (C^infty(mathbb{R}),tau_1)$ the map is continuous. If both topologies are Frechet, then the open mapping theorem already implies that this map is open, i.e. the inverse map $mathrm{id} colon (C^infty(mathbb{R}),tau_1) rightarrow (C^infty(mathbb{R}),tau_2)$ is continuous and thus $tau_1 = tau_2$.
$endgroup$
– p4sch
Dec 1 '18 at 21:27
$begingroup$
I like this, but my only problem is that we haven't covered the open mapping theorem for Frechet spaces. Is there a way to adapt Tito Aliatron's hints into this? I'm looking through the proof of the open mapping theorem for Frechet spaces to see if I can do it too.
$endgroup$
– yoshi
Dec 1 '18 at 21:44
1
$begingroup$
I don't think that you can prove this much easier. It is a feature coming from the completeness of the space. You may have a look in Rudin's book on functional analysis. There you can find a proof of the open mapping theorem - that is Theorem 2.11. In fact, the idea of the proof is the same as in the case of banach spaces.
$endgroup$
– p4sch
Dec 2 '18 at 11:03
add a comment |
$begingroup$
The question doesn't exclude that there are different topologies on $C^infty(mathbb{R})$ such that $C^infty(mathbb{R})$ is a Frechet space with this topology. However, since the open mapping theorem is also true for Frechet spaces, we cannot have a finer (or weaker) topology (as the usual one) on $C^infty(mathbb{R})$ in which $C^infty(mathbb{R})$ is also a Frechet space and $f^{(k)}_n rightarrow f^{(k)}$ uniformly on compact sets for each $k in mathbb{N}$.
One can proof that $C^infty(mathbb{R})$ has dimension $2^{aleph_0}$ in the sense of Hamel basis. Thus you can take e.g. the Banach-space $L^1(mathbb{R})$ and transport the norm to $C^infty(mathbb{R})$. With these norm $C^infty(mathbb{R})$ is a Banach space. Since the topology of local convergence of all derivates is not normable, this weird topology is different than the usual one.
$endgroup$
The question doesn't exclude that there are different topologies on $C^infty(mathbb{R})$ such that $C^infty(mathbb{R})$ is a Frechet space with this topology. However, since the open mapping theorem is also true for Frechet spaces, we cannot have a finer (or weaker) topology (as the usual one) on $C^infty(mathbb{R})$ in which $C^infty(mathbb{R})$ is also a Frechet space and $f^{(k)}_n rightarrow f^{(k)}$ uniformly on compact sets for each $k in mathbb{N}$.
One can proof that $C^infty(mathbb{R})$ has dimension $2^{aleph_0}$ in the sense of Hamel basis. Thus you can take e.g. the Banach-space $L^1(mathbb{R})$ and transport the norm to $C^infty(mathbb{R})$. With these norm $C^infty(mathbb{R})$ is a Banach space. Since the topology of local convergence of all derivates is not normable, this weird topology is different than the usual one.
edited Dec 1 '18 at 7:17
answered Nov 30 '18 at 20:33
p4schp4sch
5,285217
5,285217
$begingroup$
why does "no finer topology" follow from the open mapping theorem?
$endgroup$
– yoshi
Dec 1 '18 at 15:22
1
$begingroup$
If $tau_1$, $tau_2$ are topologies on $C^infty(mathbb{R})$ with $tau_1 subset tau_2$, i.e. $tau_2$ is finer than $tau_1$, then $mathrm{id} colon (C^infty(mathbb{R}),tau_2) rightarrow (C^infty(mathbb{R}),tau_1)$ the map is continuous. If both topologies are Frechet, then the open mapping theorem already implies that this map is open, i.e. the inverse map $mathrm{id} colon (C^infty(mathbb{R}),tau_1) rightarrow (C^infty(mathbb{R}),tau_2)$ is continuous and thus $tau_1 = tau_2$.
$endgroup$
– p4sch
Dec 1 '18 at 21:27
$begingroup$
I like this, but my only problem is that we haven't covered the open mapping theorem for Frechet spaces. Is there a way to adapt Tito Aliatron's hints into this? I'm looking through the proof of the open mapping theorem for Frechet spaces to see if I can do it too.
$endgroup$
– yoshi
Dec 1 '18 at 21:44
1
$begingroup$
I don't think that you can prove this much easier. It is a feature coming from the completeness of the space. You may have a look in Rudin's book on functional analysis. There you can find a proof of the open mapping theorem - that is Theorem 2.11. In fact, the idea of the proof is the same as in the case of banach spaces.
$endgroup$
– p4sch
Dec 2 '18 at 11:03
add a comment |
$begingroup$
why does "no finer topology" follow from the open mapping theorem?
$endgroup$
– yoshi
Dec 1 '18 at 15:22
1
$begingroup$
If $tau_1$, $tau_2$ are topologies on $C^infty(mathbb{R})$ with $tau_1 subset tau_2$, i.e. $tau_2$ is finer than $tau_1$, then $mathrm{id} colon (C^infty(mathbb{R}),tau_2) rightarrow (C^infty(mathbb{R}),tau_1)$ the map is continuous. If both topologies are Frechet, then the open mapping theorem already implies that this map is open, i.e. the inverse map $mathrm{id} colon (C^infty(mathbb{R}),tau_1) rightarrow (C^infty(mathbb{R}),tau_2)$ is continuous and thus $tau_1 = tau_2$.
$endgroup$
– p4sch
Dec 1 '18 at 21:27
$begingroup$
I like this, but my only problem is that we haven't covered the open mapping theorem for Frechet spaces. Is there a way to adapt Tito Aliatron's hints into this? I'm looking through the proof of the open mapping theorem for Frechet spaces to see if I can do it too.
$endgroup$
– yoshi
Dec 1 '18 at 21:44
1
$begingroup$
I don't think that you can prove this much easier. It is a feature coming from the completeness of the space. You may have a look in Rudin's book on functional analysis. There you can find a proof of the open mapping theorem - that is Theorem 2.11. In fact, the idea of the proof is the same as in the case of banach spaces.
$endgroup$
– p4sch
Dec 2 '18 at 11:03
$begingroup$
why does "no finer topology" follow from the open mapping theorem?
$endgroup$
– yoshi
Dec 1 '18 at 15:22
$begingroup$
why does "no finer topology" follow from the open mapping theorem?
$endgroup$
– yoshi
Dec 1 '18 at 15:22
1
1
$begingroup$
If $tau_1$, $tau_2$ are topologies on $C^infty(mathbb{R})$ with $tau_1 subset tau_2$, i.e. $tau_2$ is finer than $tau_1$, then $mathrm{id} colon (C^infty(mathbb{R}),tau_2) rightarrow (C^infty(mathbb{R}),tau_1)$ the map is continuous. If both topologies are Frechet, then the open mapping theorem already implies that this map is open, i.e. the inverse map $mathrm{id} colon (C^infty(mathbb{R}),tau_1) rightarrow (C^infty(mathbb{R}),tau_2)$ is continuous and thus $tau_1 = tau_2$.
$endgroup$
– p4sch
Dec 1 '18 at 21:27
$begingroup$
If $tau_1$, $tau_2$ are topologies on $C^infty(mathbb{R})$ with $tau_1 subset tau_2$, i.e. $tau_2$ is finer than $tau_1$, then $mathrm{id} colon (C^infty(mathbb{R}),tau_2) rightarrow (C^infty(mathbb{R}),tau_1)$ the map is continuous. If both topologies are Frechet, then the open mapping theorem already implies that this map is open, i.e. the inverse map $mathrm{id} colon (C^infty(mathbb{R}),tau_1) rightarrow (C^infty(mathbb{R}),tau_2)$ is continuous and thus $tau_1 = tau_2$.
$endgroup$
– p4sch
Dec 1 '18 at 21:27
$begingroup$
I like this, but my only problem is that we haven't covered the open mapping theorem for Frechet spaces. Is there a way to adapt Tito Aliatron's hints into this? I'm looking through the proof of the open mapping theorem for Frechet spaces to see if I can do it too.
$endgroup$
– yoshi
Dec 1 '18 at 21:44
$begingroup$
I like this, but my only problem is that we haven't covered the open mapping theorem for Frechet spaces. Is there a way to adapt Tito Aliatron's hints into this? I'm looking through the proof of the open mapping theorem for Frechet spaces to see if I can do it too.
$endgroup$
– yoshi
Dec 1 '18 at 21:44
1
1
$begingroup$
I don't think that you can prove this much easier. It is a feature coming from the completeness of the space. You may have a look in Rudin's book on functional analysis. There you can find a proof of the open mapping theorem - that is Theorem 2.11. In fact, the idea of the proof is the same as in the case of banach spaces.
$endgroup$
– p4sch
Dec 2 '18 at 11:03
$begingroup$
I don't think that you can prove this much easier. It is a feature coming from the completeness of the space. You may have a look in Rudin's book on functional analysis. There you can find a proof of the open mapping theorem - that is Theorem 2.11. In fact, the idea of the proof is the same as in the case of banach spaces.
$endgroup$
– p4sch
Dec 2 '18 at 11:03
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3020286%2fc-infty-mathbbr-as-a-fr%25c3%25a9chet-space%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
The seminirms are $p_{n,k}(f):= sup_{[-k,k]} |f^{(n)}|$. The key is that any compact set is contained in some interval $[-k,k]$
$endgroup$
– Tito Eliatron
Nov 30 '18 at 16:58
$begingroup$
I see that, but that's for a particular choice of seminorms. Why should it be true for any arbitrary countable family of seminorms though?
$endgroup$
– yoshi
Nov 30 '18 at 17:21
1
$begingroup$
For fixed k,n,m, The set ${p_{n,k}(f,0)<m}$ is open, so for your Family of seminorms, you can put a p- Bail inside.
$endgroup$
– Tito Eliatron
Nov 30 '18 at 17:31
$begingroup$
Can you elaborate on this statement, what is a p-ball and why is it suffient for one p-ball to be inside?
$endgroup$
– yoshi
Dec 1 '18 at 15:20