Closed form expression for matrix exponential derivative with respect to scalars
$begingroup$
I'd like to evaluate generic expressions of the following form:
$$frac{d}{da}expleft[aX + bYright]$$
where $a,b$ are scalars and $X,Y$ are arbitrary complex matrices. Replacing the exponential with its defining series gives us an infinite series of terms which are each symmetrized by the derivative:
$$sum_{n=0}^{infty}frac{1}{n!}frac{d}{da}left(aX+bYright)^{n}$$
For say $n=3$ this gives a term of the form
$$X(aX+bY)^{2}+(aX+bY)X(aX+bY)+(aX+bY)^{2}X$$
I don't see a clean way to resum such a series into a nice analytic form, but I thought maybe there was a clean result for this up to commutators. Any insights or literature suggestions are very welcome.
linear-algebra matrix-exponential
$endgroup$
add a comment |
$begingroup$
I'd like to evaluate generic expressions of the following form:
$$frac{d}{da}expleft[aX + bYright]$$
where $a,b$ are scalars and $X,Y$ are arbitrary complex matrices. Replacing the exponential with its defining series gives us an infinite series of terms which are each symmetrized by the derivative:
$$sum_{n=0}^{infty}frac{1}{n!}frac{d}{da}left(aX+bYright)^{n}$$
For say $n=3$ this gives a term of the form
$$X(aX+bY)^{2}+(aX+bY)X(aX+bY)+(aX+bY)^{2}X$$
I don't see a clean way to resum such a series into a nice analytic form, but I thought maybe there was a clean result for this up to commutators. Any insights or literature suggestions are very welcome.
linear-algebra matrix-exponential
$endgroup$
add a comment |
$begingroup$
I'd like to evaluate generic expressions of the following form:
$$frac{d}{da}expleft[aX + bYright]$$
where $a,b$ are scalars and $X,Y$ are arbitrary complex matrices. Replacing the exponential with its defining series gives us an infinite series of terms which are each symmetrized by the derivative:
$$sum_{n=0}^{infty}frac{1}{n!}frac{d}{da}left(aX+bYright)^{n}$$
For say $n=3$ this gives a term of the form
$$X(aX+bY)^{2}+(aX+bY)X(aX+bY)+(aX+bY)^{2}X$$
I don't see a clean way to resum such a series into a nice analytic form, but I thought maybe there was a clean result for this up to commutators. Any insights or literature suggestions are very welcome.
linear-algebra matrix-exponential
$endgroup$
I'd like to evaluate generic expressions of the following form:
$$frac{d}{da}expleft[aX + bYright]$$
where $a,b$ are scalars and $X,Y$ are arbitrary complex matrices. Replacing the exponential with its defining series gives us an infinite series of terms which are each symmetrized by the derivative:
$$sum_{n=0}^{infty}frac{1}{n!}frac{d}{da}left(aX+bYright)^{n}$$
For say $n=3$ this gives a term of the form
$$X(aX+bY)^{2}+(aX+bY)X(aX+bY)+(aX+bY)^{2}X$$
I don't see a clean way to resum such a series into a nice analytic form, but I thought maybe there was a clean result for this up to commutators. Any insights or literature suggestions are very welcome.
linear-algebra matrix-exponential
linear-algebra matrix-exponential
edited Feb 3 at 4:12
miggle
asked Feb 3 at 4:02
migglemiggle
404
404
add a comment |
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
In general, the derivative of the exponential map is given by
$$
frac{d}{dt}e^{Z(t)} = e^{Z}frac{1 - e^{-mathrm{ad}_{Z}}}{mathrm{ad}_{Z}}frac{dZ(t)}{dt}
$$
Thus, for your case of $Z(a) = aX + bY$, we have
$$
begin{align*}
frac{d}{da}e^{Z} &= e^{Z}frac{1 - e^{-mathrm{ad}_{Z}}}{mathrm{ad}_{Z}}(X)
\ & = e^Z sum_{k=0}^infty frac{(-1)^k}{(k+1)!} mathrm{ad}_Z^k(X)
end{align*}
$$
Where $mathrm{ad}_Z^k(X)$ denotes $[overbrace{Z,[Z,cdots,[Z}^{k text{ times}},X]cdots]]$.
From the other answer based on Hall's text, we also have
$$
left. frac{d}{da} e^Z right|_{a = 0} = e^{bY}left{
X - frac 1{2!}b[Y,X] + frac 1{3!}b^2[Y,[Y,X]] - cdots
right}
$$
$endgroup$
add a comment |
$begingroup$
The number $b$ is really irrelevant to your question.
For all $X,Yin M_n(mathbb{C})$, we have
$$
frac{d}{dt}e^{X+tY}big|_{t=0}=e^Xleft{
Y-frac{[X,Y]}{2!}+frac{[X,[X,Y]]}{3!}-cdots
right}.
$$
More generally, if $X(t)$ is a smooth matrix-valued function, then
$$
frac{d}{dt}e^{X(t)}=e^{X(t)}left{
frac{I-e^{-operatorname{ad}_{X(t)}}}{operatorname{ad}_{X(t)}}bigg(frac{dX}{dt}bigg)
right}
$$
See Theorem 5.4 (Derivative of Exponential) and its proof in Brian Hall's Lie Groups, Lie Algebras, and Representations.
$endgroup$
add a comment |
$begingroup$
If $X$ and $Y$ commute, then
$$
frac{d}{da}e^{aX+bY}=frac{d}{da}e^{aX}e^{bY}=Xe^{aX+bY}.
$$
$endgroup$
add a comment |
$begingroup$
Let me add a different way of writing the result.
If $X(t)$ is an operator-valued function, then
$$ frac{mathrm d}{mathrm dt} mathrm e^{X(t)} = int_0^1 mathrm e^{(1-lambda) X(t)} frac{mathrm dX}{mathrm dt} mathrm e^{lambda X(t)}; mathrm dlambda . tag{*} $$
Proof.
We begin with the identity
$$ mathrm e^{-Lambda X} frac{mathrm d}{mathrm dt} mathrm e^{Lambda X} = int_0^Lambda mathrm e^{-lambda X} frac{mathrm dX}{mathrm dt} mathrm e^{lambda X}; mathrm dlambda . $$
These two expressions are equal because they satisfy the same initial value problem as functions of $Lambda$.
Setting $Lambda = 1$ gives the desired result (*).
Applied to your example:
$$ frac{mathrm d}{mathrm da} mathrm e^{aX + bY} = int_0^1 mathrm e^{(1-lambda)(aX+bY)}, X, mathrm e^{lambda(aX+bY)}; mathrm dlambda . $$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3098159%2fclosed-form-expression-for-matrix-exponential-derivative-with-respect-to-scalars%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
In general, the derivative of the exponential map is given by
$$
frac{d}{dt}e^{Z(t)} = e^{Z}frac{1 - e^{-mathrm{ad}_{Z}}}{mathrm{ad}_{Z}}frac{dZ(t)}{dt}
$$
Thus, for your case of $Z(a) = aX + bY$, we have
$$
begin{align*}
frac{d}{da}e^{Z} &= e^{Z}frac{1 - e^{-mathrm{ad}_{Z}}}{mathrm{ad}_{Z}}(X)
\ & = e^Z sum_{k=0}^infty frac{(-1)^k}{(k+1)!} mathrm{ad}_Z^k(X)
end{align*}
$$
Where $mathrm{ad}_Z^k(X)$ denotes $[overbrace{Z,[Z,cdots,[Z}^{k text{ times}},X]cdots]]$.
From the other answer based on Hall's text, we also have
$$
left. frac{d}{da} e^Z right|_{a = 0} = e^{bY}left{
X - frac 1{2!}b[Y,X] + frac 1{3!}b^2[Y,[Y,X]] - cdots
right}
$$
$endgroup$
add a comment |
$begingroup$
In general, the derivative of the exponential map is given by
$$
frac{d}{dt}e^{Z(t)} = e^{Z}frac{1 - e^{-mathrm{ad}_{Z}}}{mathrm{ad}_{Z}}frac{dZ(t)}{dt}
$$
Thus, for your case of $Z(a) = aX + bY$, we have
$$
begin{align*}
frac{d}{da}e^{Z} &= e^{Z}frac{1 - e^{-mathrm{ad}_{Z}}}{mathrm{ad}_{Z}}(X)
\ & = e^Z sum_{k=0}^infty frac{(-1)^k}{(k+1)!} mathrm{ad}_Z^k(X)
end{align*}
$$
Where $mathrm{ad}_Z^k(X)$ denotes $[overbrace{Z,[Z,cdots,[Z}^{k text{ times}},X]cdots]]$.
From the other answer based on Hall's text, we also have
$$
left. frac{d}{da} e^Z right|_{a = 0} = e^{bY}left{
X - frac 1{2!}b[Y,X] + frac 1{3!}b^2[Y,[Y,X]] - cdots
right}
$$
$endgroup$
add a comment |
$begingroup$
In general, the derivative of the exponential map is given by
$$
frac{d}{dt}e^{Z(t)} = e^{Z}frac{1 - e^{-mathrm{ad}_{Z}}}{mathrm{ad}_{Z}}frac{dZ(t)}{dt}
$$
Thus, for your case of $Z(a) = aX + bY$, we have
$$
begin{align*}
frac{d}{da}e^{Z} &= e^{Z}frac{1 - e^{-mathrm{ad}_{Z}}}{mathrm{ad}_{Z}}(X)
\ & = e^Z sum_{k=0}^infty frac{(-1)^k}{(k+1)!} mathrm{ad}_Z^k(X)
end{align*}
$$
Where $mathrm{ad}_Z^k(X)$ denotes $[overbrace{Z,[Z,cdots,[Z}^{k text{ times}},X]cdots]]$.
From the other answer based on Hall's text, we also have
$$
left. frac{d}{da} e^Z right|_{a = 0} = e^{bY}left{
X - frac 1{2!}b[Y,X] + frac 1{3!}b^2[Y,[Y,X]] - cdots
right}
$$
$endgroup$
In general, the derivative of the exponential map is given by
$$
frac{d}{dt}e^{Z(t)} = e^{Z}frac{1 - e^{-mathrm{ad}_{Z}}}{mathrm{ad}_{Z}}frac{dZ(t)}{dt}
$$
Thus, for your case of $Z(a) = aX + bY$, we have
$$
begin{align*}
frac{d}{da}e^{Z} &= e^{Z}frac{1 - e^{-mathrm{ad}_{Z}}}{mathrm{ad}_{Z}}(X)
\ & = e^Z sum_{k=0}^infty frac{(-1)^k}{(k+1)!} mathrm{ad}_Z^k(X)
end{align*}
$$
Where $mathrm{ad}_Z^k(X)$ denotes $[overbrace{Z,[Z,cdots,[Z}^{k text{ times}},X]cdots]]$.
From the other answer based on Hall's text, we also have
$$
left. frac{d}{da} e^Z right|_{a = 0} = e^{bY}left{
X - frac 1{2!}b[Y,X] + frac 1{3!}b^2[Y,[Y,X]] - cdots
right}
$$
edited Feb 3 at 4:43
answered Feb 3 at 4:33
OmnomnomnomOmnomnomnom
128k791183
128k791183
add a comment |
add a comment |
$begingroup$
The number $b$ is really irrelevant to your question.
For all $X,Yin M_n(mathbb{C})$, we have
$$
frac{d}{dt}e^{X+tY}big|_{t=0}=e^Xleft{
Y-frac{[X,Y]}{2!}+frac{[X,[X,Y]]}{3!}-cdots
right}.
$$
More generally, if $X(t)$ is a smooth matrix-valued function, then
$$
frac{d}{dt}e^{X(t)}=e^{X(t)}left{
frac{I-e^{-operatorname{ad}_{X(t)}}}{operatorname{ad}_{X(t)}}bigg(frac{dX}{dt}bigg)
right}
$$
See Theorem 5.4 (Derivative of Exponential) and its proof in Brian Hall's Lie Groups, Lie Algebras, and Representations.
$endgroup$
add a comment |
$begingroup$
The number $b$ is really irrelevant to your question.
For all $X,Yin M_n(mathbb{C})$, we have
$$
frac{d}{dt}e^{X+tY}big|_{t=0}=e^Xleft{
Y-frac{[X,Y]}{2!}+frac{[X,[X,Y]]}{3!}-cdots
right}.
$$
More generally, if $X(t)$ is a smooth matrix-valued function, then
$$
frac{d}{dt}e^{X(t)}=e^{X(t)}left{
frac{I-e^{-operatorname{ad}_{X(t)}}}{operatorname{ad}_{X(t)}}bigg(frac{dX}{dt}bigg)
right}
$$
See Theorem 5.4 (Derivative of Exponential) and its proof in Brian Hall's Lie Groups, Lie Algebras, and Representations.
$endgroup$
add a comment |
$begingroup$
The number $b$ is really irrelevant to your question.
For all $X,Yin M_n(mathbb{C})$, we have
$$
frac{d}{dt}e^{X+tY}big|_{t=0}=e^Xleft{
Y-frac{[X,Y]}{2!}+frac{[X,[X,Y]]}{3!}-cdots
right}.
$$
More generally, if $X(t)$ is a smooth matrix-valued function, then
$$
frac{d}{dt}e^{X(t)}=e^{X(t)}left{
frac{I-e^{-operatorname{ad}_{X(t)}}}{operatorname{ad}_{X(t)}}bigg(frac{dX}{dt}bigg)
right}
$$
See Theorem 5.4 (Derivative of Exponential) and its proof in Brian Hall's Lie Groups, Lie Algebras, and Representations.
$endgroup$
The number $b$ is really irrelevant to your question.
For all $X,Yin M_n(mathbb{C})$, we have
$$
frac{d}{dt}e^{X+tY}big|_{t=0}=e^Xleft{
Y-frac{[X,Y]}{2!}+frac{[X,[X,Y]]}{3!}-cdots
right}.
$$
More generally, if $X(t)$ is a smooth matrix-valued function, then
$$
frac{d}{dt}e^{X(t)}=e^{X(t)}left{
frac{I-e^{-operatorname{ad}_{X(t)}}}{operatorname{ad}_{X(t)}}bigg(frac{dX}{dt}bigg)
right}
$$
See Theorem 5.4 (Derivative of Exponential) and its proof in Brian Hall's Lie Groups, Lie Algebras, and Representations.
edited Feb 3 at 4:38
answered Feb 3 at 4:32
user587192user587192
2,064415
2,064415
add a comment |
add a comment |
$begingroup$
If $X$ and $Y$ commute, then
$$
frac{d}{da}e^{aX+bY}=frac{d}{da}e^{aX}e^{bY}=Xe^{aX+bY}.
$$
$endgroup$
add a comment |
$begingroup$
If $X$ and $Y$ commute, then
$$
frac{d}{da}e^{aX+bY}=frac{d}{da}e^{aX}e^{bY}=Xe^{aX+bY}.
$$
$endgroup$
add a comment |
$begingroup$
If $X$ and $Y$ commute, then
$$
frac{d}{da}e^{aX+bY}=frac{d}{da}e^{aX}e^{bY}=Xe^{aX+bY}.
$$
$endgroup$
If $X$ and $Y$ commute, then
$$
frac{d}{da}e^{aX+bY}=frac{d}{da}e^{aX}e^{bY}=Xe^{aX+bY}.
$$
answered Feb 3 at 4:25
d.k.o.d.k.o.
9,340628
9,340628
add a comment |
add a comment |
$begingroup$
Let me add a different way of writing the result.
If $X(t)$ is an operator-valued function, then
$$ frac{mathrm d}{mathrm dt} mathrm e^{X(t)} = int_0^1 mathrm e^{(1-lambda) X(t)} frac{mathrm dX}{mathrm dt} mathrm e^{lambda X(t)}; mathrm dlambda . tag{*} $$
Proof.
We begin with the identity
$$ mathrm e^{-Lambda X} frac{mathrm d}{mathrm dt} mathrm e^{Lambda X} = int_0^Lambda mathrm e^{-lambda X} frac{mathrm dX}{mathrm dt} mathrm e^{lambda X}; mathrm dlambda . $$
These two expressions are equal because they satisfy the same initial value problem as functions of $Lambda$.
Setting $Lambda = 1$ gives the desired result (*).
Applied to your example:
$$ frac{mathrm d}{mathrm da} mathrm e^{aX + bY} = int_0^1 mathrm e^{(1-lambda)(aX+bY)}, X, mathrm e^{lambda(aX+bY)}; mathrm dlambda . $$
$endgroup$
add a comment |
$begingroup$
Let me add a different way of writing the result.
If $X(t)$ is an operator-valued function, then
$$ frac{mathrm d}{mathrm dt} mathrm e^{X(t)} = int_0^1 mathrm e^{(1-lambda) X(t)} frac{mathrm dX}{mathrm dt} mathrm e^{lambda X(t)}; mathrm dlambda . tag{*} $$
Proof.
We begin with the identity
$$ mathrm e^{-Lambda X} frac{mathrm d}{mathrm dt} mathrm e^{Lambda X} = int_0^Lambda mathrm e^{-lambda X} frac{mathrm dX}{mathrm dt} mathrm e^{lambda X}; mathrm dlambda . $$
These two expressions are equal because they satisfy the same initial value problem as functions of $Lambda$.
Setting $Lambda = 1$ gives the desired result (*).
Applied to your example:
$$ frac{mathrm d}{mathrm da} mathrm e^{aX + bY} = int_0^1 mathrm e^{(1-lambda)(aX+bY)}, X, mathrm e^{lambda(aX+bY)}; mathrm dlambda . $$
$endgroup$
add a comment |
$begingroup$
Let me add a different way of writing the result.
If $X(t)$ is an operator-valued function, then
$$ frac{mathrm d}{mathrm dt} mathrm e^{X(t)} = int_0^1 mathrm e^{(1-lambda) X(t)} frac{mathrm dX}{mathrm dt} mathrm e^{lambda X(t)}; mathrm dlambda . tag{*} $$
Proof.
We begin with the identity
$$ mathrm e^{-Lambda X} frac{mathrm d}{mathrm dt} mathrm e^{Lambda X} = int_0^Lambda mathrm e^{-lambda X} frac{mathrm dX}{mathrm dt} mathrm e^{lambda X}; mathrm dlambda . $$
These two expressions are equal because they satisfy the same initial value problem as functions of $Lambda$.
Setting $Lambda = 1$ gives the desired result (*).
Applied to your example:
$$ frac{mathrm d}{mathrm da} mathrm e^{aX + bY} = int_0^1 mathrm e^{(1-lambda)(aX+bY)}, X, mathrm e^{lambda(aX+bY)}; mathrm dlambda . $$
$endgroup$
Let me add a different way of writing the result.
If $X(t)$ is an operator-valued function, then
$$ frac{mathrm d}{mathrm dt} mathrm e^{X(t)} = int_0^1 mathrm e^{(1-lambda) X(t)} frac{mathrm dX}{mathrm dt} mathrm e^{lambda X(t)}; mathrm dlambda . tag{*} $$
Proof.
We begin with the identity
$$ mathrm e^{-Lambda X} frac{mathrm d}{mathrm dt} mathrm e^{Lambda X} = int_0^Lambda mathrm e^{-lambda X} frac{mathrm dX}{mathrm dt} mathrm e^{lambda X}; mathrm dlambda . $$
These two expressions are equal because they satisfy the same initial value problem as functions of $Lambda$.
Setting $Lambda = 1$ gives the desired result (*).
Applied to your example:
$$ frac{mathrm d}{mathrm da} mathrm e^{aX + bY} = int_0^1 mathrm e^{(1-lambda)(aX+bY)}, X, mathrm e^{lambda(aX+bY)}; mathrm dlambda . $$
answered Feb 3 at 10:41
NoiralefNoiralef
347112
347112
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3098159%2fclosed-form-expression-for-matrix-exponential-derivative-with-respect-to-scalars%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown