prove that Limit of $sinbar{z} over{sinz} $ does not exists as $zto 0$
$begingroup$
so i have to prove that the limit of this function doenot exists
$sinbar{z} over{sinz} $ as $zto 0$
well i started with z = $re^{itheta}$
so
${sinspace rspace e^{-itheta}} over sin space r space e^{itheta}$
so $lim z space spacespace when spacespace zto0 $
$ sin space e^{-2itheta} space spacespacespace is space depends space on space theta space only space so space lim space doesn't space exists
space forspace this space function space right space ?? $
calculus abstract-algebra general-topology complex-analysis
$endgroup$
add a comment |
$begingroup$
so i have to prove that the limit of this function doenot exists
$sinbar{z} over{sinz} $ as $zto 0$
well i started with z = $re^{itheta}$
so
${sinspace rspace e^{-itheta}} over sin space r space e^{itheta}$
so $lim z space spacespace when spacespace zto0 $
$ sin space e^{-2itheta} space spacespacespace is space depends space on space theta space only space so space lim space doesn't space exists
space forspace this space function space right space ?? $
calculus abstract-algebra general-topology complex-analysis
$endgroup$
$begingroup$
but how you get $sin e^{-i2theta}$ in your question? It is not clear
$endgroup$
– Masacroso
Nov 30 '18 at 17:28
$begingroup$
i tried to sole it and that is what i got
$endgroup$
– Smb Youz
Nov 30 '18 at 17:31
add a comment |
$begingroup$
so i have to prove that the limit of this function doenot exists
$sinbar{z} over{sinz} $ as $zto 0$
well i started with z = $re^{itheta}$
so
${sinspace rspace e^{-itheta}} over sin space r space e^{itheta}$
so $lim z space spacespace when spacespace zto0 $
$ sin space e^{-2itheta} space spacespacespace is space depends space on space theta space only space so space lim space doesn't space exists
space forspace this space function space right space ?? $
calculus abstract-algebra general-topology complex-analysis
$endgroup$
so i have to prove that the limit of this function doenot exists
$sinbar{z} over{sinz} $ as $zto 0$
well i started with z = $re^{itheta}$
so
${sinspace rspace e^{-itheta}} over sin space r space e^{itheta}$
so $lim z space spacespace when spacespace zto0 $
$ sin space e^{-2itheta} space spacespacespace is space depends space on space theta space only space so space lim space doesn't space exists
space forspace this space function space right space ?? $
calculus abstract-algebra general-topology complex-analysis
calculus abstract-algebra general-topology complex-analysis
edited Nov 30 '18 at 17:11
Smb Youz
asked Nov 30 '18 at 17:03
Smb YouzSmb Youz
165
165
$begingroup$
but how you get $sin e^{-i2theta}$ in your question? It is not clear
$endgroup$
– Masacroso
Nov 30 '18 at 17:28
$begingroup$
i tried to sole it and that is what i got
$endgroup$
– Smb Youz
Nov 30 '18 at 17:31
add a comment |
$begingroup$
but how you get $sin e^{-i2theta}$ in your question? It is not clear
$endgroup$
– Masacroso
Nov 30 '18 at 17:28
$begingroup$
i tried to sole it and that is what i got
$endgroup$
– Smb Youz
Nov 30 '18 at 17:31
$begingroup$
but how you get $sin e^{-i2theta}$ in your question? It is not clear
$endgroup$
– Masacroso
Nov 30 '18 at 17:28
$begingroup$
but how you get $sin e^{-i2theta}$ in your question? It is not clear
$endgroup$
– Masacroso
Nov 30 '18 at 17:28
$begingroup$
i tried to sole it and that is what i got
$endgroup$
– Smb Youz
Nov 30 '18 at 17:31
$begingroup$
i tried to sole it and that is what i got
$endgroup$
– Smb Youz
Nov 30 '18 at 17:31
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
If $z = x in mathbb R$, then
$$
frac{sin overline z}{sin z} = frac {sin x}{sin x} = 1 to 1;
$$
if $z = mathrm i y, y in mathbb R$, then
$$
frac {sin overline z}{sin z} = frac {sin(-mathrm i y)}{sin (mathrm i y)},
$$
using the series expansion of $sin z$ we have $sin (-z) = -sin(z)$, so the quotient above equals $-1$.
Thus the limit does not exist.
$endgroup$
add a comment |
$begingroup$
From $lim_{zto 0}frac{z}{sin z}=1$ we have that
$$lim_{zto 0}frac{sinbar z}{sin z}=lim_{zto 0}frac{bar z}{z}=lim_{rto 0^+}frac{re^{-itheta}}{r e^{itheta}}=e^{-i2theta}$$
for $z=re^{itheta}$. Hence the limit doesn't exists because for different $thetain [0,pi)$ the value $e^{-i2theta}$ changes.
$endgroup$
$begingroup$
if the professor ask me in the question to ""show him how"" is that it has no limit !!
$endgroup$
– Smb Youz
Nov 30 '18 at 17:23
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3020333%2fprove-that-limit-of-sin-barz-oversinz-does-not-exists-as-z-to-0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
If $z = x in mathbb R$, then
$$
frac{sin overline z}{sin z} = frac {sin x}{sin x} = 1 to 1;
$$
if $z = mathrm i y, y in mathbb R$, then
$$
frac {sin overline z}{sin z} = frac {sin(-mathrm i y)}{sin (mathrm i y)},
$$
using the series expansion of $sin z$ we have $sin (-z) = -sin(z)$, so the quotient above equals $-1$.
Thus the limit does not exist.
$endgroup$
add a comment |
$begingroup$
If $z = x in mathbb R$, then
$$
frac{sin overline z}{sin z} = frac {sin x}{sin x} = 1 to 1;
$$
if $z = mathrm i y, y in mathbb R$, then
$$
frac {sin overline z}{sin z} = frac {sin(-mathrm i y)}{sin (mathrm i y)},
$$
using the series expansion of $sin z$ we have $sin (-z) = -sin(z)$, so the quotient above equals $-1$.
Thus the limit does not exist.
$endgroup$
add a comment |
$begingroup$
If $z = x in mathbb R$, then
$$
frac{sin overline z}{sin z} = frac {sin x}{sin x} = 1 to 1;
$$
if $z = mathrm i y, y in mathbb R$, then
$$
frac {sin overline z}{sin z} = frac {sin(-mathrm i y)}{sin (mathrm i y)},
$$
using the series expansion of $sin z$ we have $sin (-z) = -sin(z)$, so the quotient above equals $-1$.
Thus the limit does not exist.
$endgroup$
If $z = x in mathbb R$, then
$$
frac{sin overline z}{sin z} = frac {sin x}{sin x} = 1 to 1;
$$
if $z = mathrm i y, y in mathbb R$, then
$$
frac {sin overline z}{sin z} = frac {sin(-mathrm i y)}{sin (mathrm i y)},
$$
using the series expansion of $sin z$ we have $sin (-z) = -sin(z)$, so the quotient above equals $-1$.
Thus the limit does not exist.
answered Nov 30 '18 at 17:21
xbhxbh
6,1351522
6,1351522
add a comment |
add a comment |
$begingroup$
From $lim_{zto 0}frac{z}{sin z}=1$ we have that
$$lim_{zto 0}frac{sinbar z}{sin z}=lim_{zto 0}frac{bar z}{z}=lim_{rto 0^+}frac{re^{-itheta}}{r e^{itheta}}=e^{-i2theta}$$
for $z=re^{itheta}$. Hence the limit doesn't exists because for different $thetain [0,pi)$ the value $e^{-i2theta}$ changes.
$endgroup$
$begingroup$
if the professor ask me in the question to ""show him how"" is that it has no limit !!
$endgroup$
– Smb Youz
Nov 30 '18 at 17:23
add a comment |
$begingroup$
From $lim_{zto 0}frac{z}{sin z}=1$ we have that
$$lim_{zto 0}frac{sinbar z}{sin z}=lim_{zto 0}frac{bar z}{z}=lim_{rto 0^+}frac{re^{-itheta}}{r e^{itheta}}=e^{-i2theta}$$
for $z=re^{itheta}$. Hence the limit doesn't exists because for different $thetain [0,pi)$ the value $e^{-i2theta}$ changes.
$endgroup$
$begingroup$
if the professor ask me in the question to ""show him how"" is that it has no limit !!
$endgroup$
– Smb Youz
Nov 30 '18 at 17:23
add a comment |
$begingroup$
From $lim_{zto 0}frac{z}{sin z}=1$ we have that
$$lim_{zto 0}frac{sinbar z}{sin z}=lim_{zto 0}frac{bar z}{z}=lim_{rto 0^+}frac{re^{-itheta}}{r e^{itheta}}=e^{-i2theta}$$
for $z=re^{itheta}$. Hence the limit doesn't exists because for different $thetain [0,pi)$ the value $e^{-i2theta}$ changes.
$endgroup$
From $lim_{zto 0}frac{z}{sin z}=1$ we have that
$$lim_{zto 0}frac{sinbar z}{sin z}=lim_{zto 0}frac{bar z}{z}=lim_{rto 0^+}frac{re^{-itheta}}{r e^{itheta}}=e^{-i2theta}$$
for $z=re^{itheta}$. Hence the limit doesn't exists because for different $thetain [0,pi)$ the value $e^{-i2theta}$ changes.
edited Nov 30 '18 at 21:23
answered Nov 30 '18 at 17:15
MasacrosoMasacroso
13.1k41747
13.1k41747
$begingroup$
if the professor ask me in the question to ""show him how"" is that it has no limit !!
$endgroup$
– Smb Youz
Nov 30 '18 at 17:23
add a comment |
$begingroup$
if the professor ask me in the question to ""show him how"" is that it has no limit !!
$endgroup$
– Smb Youz
Nov 30 '18 at 17:23
$begingroup$
if the professor ask me in the question to ""show him how"" is that it has no limit !!
$endgroup$
– Smb Youz
Nov 30 '18 at 17:23
$begingroup$
if the professor ask me in the question to ""show him how"" is that it has no limit !!
$endgroup$
– Smb Youz
Nov 30 '18 at 17:23
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3020333%2fprove-that-limit-of-sin-barz-oversinz-does-not-exists-as-z-to-0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
but how you get $sin e^{-i2theta}$ in your question? It is not clear
$endgroup$
– Masacroso
Nov 30 '18 at 17:28
$begingroup$
i tried to sole it and that is what i got
$endgroup$
– Smb Youz
Nov 30 '18 at 17:31