prove that Limit of $sinbar{z} over{sinz} $ does not exists as $zto 0$












0












$begingroup$


so i have to prove that the limit of this function doenot exists



$sinbar{z} over{sinz} $ as $zto 0$



well i started with z = $re^{itheta}$



so



${sinspace rspace e^{-itheta}} over sin space r space e^{itheta}$



so $lim z space spacespace when spacespace zto0 $



$ sin space e^{-2itheta} space spacespacespace is space depends space on space theta space only space so space lim space doesn't space exists
space forspace this space function space right space ?? $










share|cite|improve this question











$endgroup$












  • $begingroup$
    but how you get $sin e^{-i2theta}$ in your question? It is not clear
    $endgroup$
    – Masacroso
    Nov 30 '18 at 17:28










  • $begingroup$
    i tried to sole it and that is what i got
    $endgroup$
    – Smb Youz
    Nov 30 '18 at 17:31
















0












$begingroup$


so i have to prove that the limit of this function doenot exists



$sinbar{z} over{sinz} $ as $zto 0$



well i started with z = $re^{itheta}$



so



${sinspace rspace e^{-itheta}} over sin space r space e^{itheta}$



so $lim z space spacespace when spacespace zto0 $



$ sin space e^{-2itheta} space spacespacespace is space depends space on space theta space only space so space lim space doesn't space exists
space forspace this space function space right space ?? $










share|cite|improve this question











$endgroup$












  • $begingroup$
    but how you get $sin e^{-i2theta}$ in your question? It is not clear
    $endgroup$
    – Masacroso
    Nov 30 '18 at 17:28










  • $begingroup$
    i tried to sole it and that is what i got
    $endgroup$
    – Smb Youz
    Nov 30 '18 at 17:31














0












0








0





$begingroup$


so i have to prove that the limit of this function doenot exists



$sinbar{z} over{sinz} $ as $zto 0$



well i started with z = $re^{itheta}$



so



${sinspace rspace e^{-itheta}} over sin space r space e^{itheta}$



so $lim z space spacespace when spacespace zto0 $



$ sin space e^{-2itheta} space spacespacespace is space depends space on space theta space only space so space lim space doesn't space exists
space forspace this space function space right space ?? $










share|cite|improve this question











$endgroup$




so i have to prove that the limit of this function doenot exists



$sinbar{z} over{sinz} $ as $zto 0$



well i started with z = $re^{itheta}$



so



${sinspace rspace e^{-itheta}} over sin space r space e^{itheta}$



so $lim z space spacespace when spacespace zto0 $



$ sin space e^{-2itheta} space spacespacespace is space depends space on space theta space only space so space lim space doesn't space exists
space forspace this space function space right space ?? $







calculus abstract-algebra general-topology complex-analysis






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 30 '18 at 17:11







Smb Youz

















asked Nov 30 '18 at 17:03









Smb YouzSmb Youz

165




165












  • $begingroup$
    but how you get $sin e^{-i2theta}$ in your question? It is not clear
    $endgroup$
    – Masacroso
    Nov 30 '18 at 17:28










  • $begingroup$
    i tried to sole it and that is what i got
    $endgroup$
    – Smb Youz
    Nov 30 '18 at 17:31


















  • $begingroup$
    but how you get $sin e^{-i2theta}$ in your question? It is not clear
    $endgroup$
    – Masacroso
    Nov 30 '18 at 17:28










  • $begingroup$
    i tried to sole it and that is what i got
    $endgroup$
    – Smb Youz
    Nov 30 '18 at 17:31
















$begingroup$
but how you get $sin e^{-i2theta}$ in your question? It is not clear
$endgroup$
– Masacroso
Nov 30 '18 at 17:28




$begingroup$
but how you get $sin e^{-i2theta}$ in your question? It is not clear
$endgroup$
– Masacroso
Nov 30 '18 at 17:28












$begingroup$
i tried to sole it and that is what i got
$endgroup$
– Smb Youz
Nov 30 '18 at 17:31




$begingroup$
i tried to sole it and that is what i got
$endgroup$
– Smb Youz
Nov 30 '18 at 17:31










2 Answers
2






active

oldest

votes


















2












$begingroup$

If $z = x in mathbb R$, then
$$
frac{sin overline z}{sin z} = frac {sin x}{sin x} = 1 to 1;
$$

if $z = mathrm i y, y in mathbb R$, then
$$
frac {sin overline z}{sin z} = frac {sin(-mathrm i y)}{sin (mathrm i y)},
$$

using the series expansion of $sin z$ we have $sin (-z) = -sin(z)$, so the quotient above equals $-1$.



Thus the limit does not exist.






share|cite|improve this answer









$endgroup$





















    1












    $begingroup$

    From $lim_{zto 0}frac{z}{sin z}=1$ we have that



    $$lim_{zto 0}frac{sinbar z}{sin z}=lim_{zto 0}frac{bar z}{z}=lim_{rto 0^+}frac{re^{-itheta}}{r e^{itheta}}=e^{-i2theta}$$



    for $z=re^{itheta}$. Hence the limit doesn't exists because for different $thetain [0,pi)$ the value $e^{-i2theta}$ changes.






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      if the professor ask me in the question to ""show him how"" is that it has no limit !!
      $endgroup$
      – Smb Youz
      Nov 30 '18 at 17:23











    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3020333%2fprove-that-limit-of-sin-barz-oversinz-does-not-exists-as-z-to-0%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    If $z = x in mathbb R$, then
    $$
    frac{sin overline z}{sin z} = frac {sin x}{sin x} = 1 to 1;
    $$

    if $z = mathrm i y, y in mathbb R$, then
    $$
    frac {sin overline z}{sin z} = frac {sin(-mathrm i y)}{sin (mathrm i y)},
    $$

    using the series expansion of $sin z$ we have $sin (-z) = -sin(z)$, so the quotient above equals $-1$.



    Thus the limit does not exist.






    share|cite|improve this answer









    $endgroup$


















      2












      $begingroup$

      If $z = x in mathbb R$, then
      $$
      frac{sin overline z}{sin z} = frac {sin x}{sin x} = 1 to 1;
      $$

      if $z = mathrm i y, y in mathbb R$, then
      $$
      frac {sin overline z}{sin z} = frac {sin(-mathrm i y)}{sin (mathrm i y)},
      $$

      using the series expansion of $sin z$ we have $sin (-z) = -sin(z)$, so the quotient above equals $-1$.



      Thus the limit does not exist.






      share|cite|improve this answer









      $endgroup$
















        2












        2








        2





        $begingroup$

        If $z = x in mathbb R$, then
        $$
        frac{sin overline z}{sin z} = frac {sin x}{sin x} = 1 to 1;
        $$

        if $z = mathrm i y, y in mathbb R$, then
        $$
        frac {sin overline z}{sin z} = frac {sin(-mathrm i y)}{sin (mathrm i y)},
        $$

        using the series expansion of $sin z$ we have $sin (-z) = -sin(z)$, so the quotient above equals $-1$.



        Thus the limit does not exist.






        share|cite|improve this answer









        $endgroup$



        If $z = x in mathbb R$, then
        $$
        frac{sin overline z}{sin z} = frac {sin x}{sin x} = 1 to 1;
        $$

        if $z = mathrm i y, y in mathbb R$, then
        $$
        frac {sin overline z}{sin z} = frac {sin(-mathrm i y)}{sin (mathrm i y)},
        $$

        using the series expansion of $sin z$ we have $sin (-z) = -sin(z)$, so the quotient above equals $-1$.



        Thus the limit does not exist.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Nov 30 '18 at 17:21









        xbhxbh

        6,1351522




        6,1351522























            1












            $begingroup$

            From $lim_{zto 0}frac{z}{sin z}=1$ we have that



            $$lim_{zto 0}frac{sinbar z}{sin z}=lim_{zto 0}frac{bar z}{z}=lim_{rto 0^+}frac{re^{-itheta}}{r e^{itheta}}=e^{-i2theta}$$



            for $z=re^{itheta}$. Hence the limit doesn't exists because for different $thetain [0,pi)$ the value $e^{-i2theta}$ changes.






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              if the professor ask me in the question to ""show him how"" is that it has no limit !!
              $endgroup$
              – Smb Youz
              Nov 30 '18 at 17:23
















            1












            $begingroup$

            From $lim_{zto 0}frac{z}{sin z}=1$ we have that



            $$lim_{zto 0}frac{sinbar z}{sin z}=lim_{zto 0}frac{bar z}{z}=lim_{rto 0^+}frac{re^{-itheta}}{r e^{itheta}}=e^{-i2theta}$$



            for $z=re^{itheta}$. Hence the limit doesn't exists because for different $thetain [0,pi)$ the value $e^{-i2theta}$ changes.






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              if the professor ask me in the question to ""show him how"" is that it has no limit !!
              $endgroup$
              – Smb Youz
              Nov 30 '18 at 17:23














            1












            1








            1





            $begingroup$

            From $lim_{zto 0}frac{z}{sin z}=1$ we have that



            $$lim_{zto 0}frac{sinbar z}{sin z}=lim_{zto 0}frac{bar z}{z}=lim_{rto 0^+}frac{re^{-itheta}}{r e^{itheta}}=e^{-i2theta}$$



            for $z=re^{itheta}$. Hence the limit doesn't exists because for different $thetain [0,pi)$ the value $e^{-i2theta}$ changes.






            share|cite|improve this answer











            $endgroup$



            From $lim_{zto 0}frac{z}{sin z}=1$ we have that



            $$lim_{zto 0}frac{sinbar z}{sin z}=lim_{zto 0}frac{bar z}{z}=lim_{rto 0^+}frac{re^{-itheta}}{r e^{itheta}}=e^{-i2theta}$$



            for $z=re^{itheta}$. Hence the limit doesn't exists because for different $thetain [0,pi)$ the value $e^{-i2theta}$ changes.







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Nov 30 '18 at 21:23

























            answered Nov 30 '18 at 17:15









            MasacrosoMasacroso

            13.1k41747




            13.1k41747












            • $begingroup$
              if the professor ask me in the question to ""show him how"" is that it has no limit !!
              $endgroup$
              – Smb Youz
              Nov 30 '18 at 17:23


















            • $begingroup$
              if the professor ask me in the question to ""show him how"" is that it has no limit !!
              $endgroup$
              – Smb Youz
              Nov 30 '18 at 17:23
















            $begingroup$
            if the professor ask me in the question to ""show him how"" is that it has no limit !!
            $endgroup$
            – Smb Youz
            Nov 30 '18 at 17:23




            $begingroup$
            if the professor ask me in the question to ""show him how"" is that it has no limit !!
            $endgroup$
            – Smb Youz
            Nov 30 '18 at 17:23


















            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3020333%2fprove-that-limit-of-sin-barz-oversinz-does-not-exists-as-z-to-0%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            How to change which sound is reproduced for terminal bell?

            Can I use Tabulator js library in my java Spring + Thymeleaf project?

            Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents