Prove or disprove an inequality problem
$begingroup$
Let $ngeq 1$ be an integer and let $a_1,ldots,a_n$ be positive real numbers, all between $0$ and $1$.
Is it possible to prove or disprove:
$$
{(prod_{i=1}^{n}(1-a_i))}{(1+sum_{i=1}^{n}a_i)}<1
$$
To prove this, I was able to prove this to be true if all $a_1,ldots,a_n$ are the same which is$(1-a)^n(1+an)<1
$ using Bernoulli's Inequality:
Take $x$ root of the inequality:
$$(1-a)(1+an)^{1/a}leqslant (1-n)(1+n)=1-n^2<1$$
But what if $a_1,ldots,a_n$ do not have uniform values?
inequality a.m.-g.m.-inequality
$endgroup$
add a comment |
$begingroup$
Let $ngeq 1$ be an integer and let $a_1,ldots,a_n$ be positive real numbers, all between $0$ and $1$.
Is it possible to prove or disprove:
$$
{(prod_{i=1}^{n}(1-a_i))}{(1+sum_{i=1}^{n}a_i)}<1
$$
To prove this, I was able to prove this to be true if all $a_1,ldots,a_n$ are the same which is$(1-a)^n(1+an)<1
$ using Bernoulli's Inequality:
Take $x$ root of the inequality:
$$(1-a)(1+an)^{1/a}leqslant (1-n)(1+n)=1-n^2<1$$
But what if $a_1,ldots,a_n$ do not have uniform values?
inequality a.m.-g.m.-inequality
$endgroup$
$begingroup$
Wouldn't the case where all $a_i$ are equal translate to proving $(1-(1-a)^n)(1+na)<1$?
$endgroup$
– Shubham Johri
Nov 30 '18 at 17:22
$begingroup$
Sorry, I edited the original question @ShubhamJohri
$endgroup$
– cscisgqr
Nov 30 '18 at 17:26
add a comment |
$begingroup$
Let $ngeq 1$ be an integer and let $a_1,ldots,a_n$ be positive real numbers, all between $0$ and $1$.
Is it possible to prove or disprove:
$$
{(prod_{i=1}^{n}(1-a_i))}{(1+sum_{i=1}^{n}a_i)}<1
$$
To prove this, I was able to prove this to be true if all $a_1,ldots,a_n$ are the same which is$(1-a)^n(1+an)<1
$ using Bernoulli's Inequality:
Take $x$ root of the inequality:
$$(1-a)(1+an)^{1/a}leqslant (1-n)(1+n)=1-n^2<1$$
But what if $a_1,ldots,a_n$ do not have uniform values?
inequality a.m.-g.m.-inequality
$endgroup$
Let $ngeq 1$ be an integer and let $a_1,ldots,a_n$ be positive real numbers, all between $0$ and $1$.
Is it possible to prove or disprove:
$$
{(prod_{i=1}^{n}(1-a_i))}{(1+sum_{i=1}^{n}a_i)}<1
$$
To prove this, I was able to prove this to be true if all $a_1,ldots,a_n$ are the same which is$(1-a)^n(1+an)<1
$ using Bernoulli's Inequality:
Take $x$ root of the inequality:
$$(1-a)(1+an)^{1/a}leqslant (1-n)(1+n)=1-n^2<1$$
But what if $a_1,ldots,a_n$ do not have uniform values?
inequality a.m.-g.m.-inequality
inequality a.m.-g.m.-inequality
edited Nov 30 '18 at 18:05
user1551
72.7k566127
72.7k566127
asked Nov 30 '18 at 17:14
cscisgqrcscisgqr
42
42
$begingroup$
Wouldn't the case where all $a_i$ are equal translate to proving $(1-(1-a)^n)(1+na)<1$?
$endgroup$
– Shubham Johri
Nov 30 '18 at 17:22
$begingroup$
Sorry, I edited the original question @ShubhamJohri
$endgroup$
– cscisgqr
Nov 30 '18 at 17:26
add a comment |
$begingroup$
Wouldn't the case where all $a_i$ are equal translate to proving $(1-(1-a)^n)(1+na)<1$?
$endgroup$
– Shubham Johri
Nov 30 '18 at 17:22
$begingroup$
Sorry, I edited the original question @ShubhamJohri
$endgroup$
– cscisgqr
Nov 30 '18 at 17:26
$begingroup$
Wouldn't the case where all $a_i$ are equal translate to proving $(1-(1-a)^n)(1+na)<1$?
$endgroup$
– Shubham Johri
Nov 30 '18 at 17:22
$begingroup$
Wouldn't the case where all $a_i$ are equal translate to proving $(1-(1-a)^n)(1+na)<1$?
$endgroup$
– Shubham Johri
Nov 30 '18 at 17:22
$begingroup$
Sorry, I edited the original question @ShubhamJohri
$endgroup$
– cscisgqr
Nov 30 '18 at 17:26
$begingroup$
Sorry, I edited the original question @ShubhamJohri
$endgroup$
– cscisgqr
Nov 30 '18 at 17:26
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
By AM-GM
$$prod_{i=1}^n(1-a_i)left(1+sum_{i=1}^na_iright)<left(frac{sumlimits_{i=1}^n(1-a_i)+1+sumlimits_{i=1}^na_i}{n+1}right)^{n+1}=left(frac{n+1}{n+1}right)^{n+1}=1.$$
The equality does not occur because $1-a_i<1+sumlimits_{i=1}^na_i.$
$endgroup$
$begingroup$
Sorry, I edited the original question
$endgroup$
– cscisgqr
Nov 30 '18 at 17:22
$begingroup$
@cscisgqr I also fixed. See now.
$endgroup$
– Michael Rozenberg
Nov 30 '18 at 17:34
$begingroup$
How did numerator become n+1? @Michael Rozenberg
$endgroup$
– cscisgqr
Nov 30 '18 at 17:47
$begingroup$
@cscisgqr It's $1+sumlimits_{i=1}^n1=1+n$ and $-sumlimits_{i=1}^na_i+sumlimits_{i=1}^na_i=0.$
$endgroup$
– Michael Rozenberg
Nov 30 '18 at 17:50
1
$begingroup$
Nice application of AM-GM +1
$endgroup$
– Macavity
Nov 30 '18 at 17:56
add a comment |
$begingroup$
Note that $1+sum_1^na_i<prod_1^n(1+a_i)$
$implies (prod_1^n(1-a_i))(1+sum_1^na_i)<(prod_1^n(1-a_i))(prod_1^n(1+a_i))=prod_1^n(1-a_i^2)<1$
$endgroup$
$begingroup$
Beautiful solution! +1.
$endgroup$
– Michael Rozenberg
Nov 30 '18 at 18:02
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3020348%2fprove-or-disprove-an-inequality-problem%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
By AM-GM
$$prod_{i=1}^n(1-a_i)left(1+sum_{i=1}^na_iright)<left(frac{sumlimits_{i=1}^n(1-a_i)+1+sumlimits_{i=1}^na_i}{n+1}right)^{n+1}=left(frac{n+1}{n+1}right)^{n+1}=1.$$
The equality does not occur because $1-a_i<1+sumlimits_{i=1}^na_i.$
$endgroup$
$begingroup$
Sorry, I edited the original question
$endgroup$
– cscisgqr
Nov 30 '18 at 17:22
$begingroup$
@cscisgqr I also fixed. See now.
$endgroup$
– Michael Rozenberg
Nov 30 '18 at 17:34
$begingroup$
How did numerator become n+1? @Michael Rozenberg
$endgroup$
– cscisgqr
Nov 30 '18 at 17:47
$begingroup$
@cscisgqr It's $1+sumlimits_{i=1}^n1=1+n$ and $-sumlimits_{i=1}^na_i+sumlimits_{i=1}^na_i=0.$
$endgroup$
– Michael Rozenberg
Nov 30 '18 at 17:50
1
$begingroup$
Nice application of AM-GM +1
$endgroup$
– Macavity
Nov 30 '18 at 17:56
add a comment |
$begingroup$
By AM-GM
$$prod_{i=1}^n(1-a_i)left(1+sum_{i=1}^na_iright)<left(frac{sumlimits_{i=1}^n(1-a_i)+1+sumlimits_{i=1}^na_i}{n+1}right)^{n+1}=left(frac{n+1}{n+1}right)^{n+1}=1.$$
The equality does not occur because $1-a_i<1+sumlimits_{i=1}^na_i.$
$endgroup$
$begingroup$
Sorry, I edited the original question
$endgroup$
– cscisgqr
Nov 30 '18 at 17:22
$begingroup$
@cscisgqr I also fixed. See now.
$endgroup$
– Michael Rozenberg
Nov 30 '18 at 17:34
$begingroup$
How did numerator become n+1? @Michael Rozenberg
$endgroup$
– cscisgqr
Nov 30 '18 at 17:47
$begingroup$
@cscisgqr It's $1+sumlimits_{i=1}^n1=1+n$ and $-sumlimits_{i=1}^na_i+sumlimits_{i=1}^na_i=0.$
$endgroup$
– Michael Rozenberg
Nov 30 '18 at 17:50
1
$begingroup$
Nice application of AM-GM +1
$endgroup$
– Macavity
Nov 30 '18 at 17:56
add a comment |
$begingroup$
By AM-GM
$$prod_{i=1}^n(1-a_i)left(1+sum_{i=1}^na_iright)<left(frac{sumlimits_{i=1}^n(1-a_i)+1+sumlimits_{i=1}^na_i}{n+1}right)^{n+1}=left(frac{n+1}{n+1}right)^{n+1}=1.$$
The equality does not occur because $1-a_i<1+sumlimits_{i=1}^na_i.$
$endgroup$
By AM-GM
$$prod_{i=1}^n(1-a_i)left(1+sum_{i=1}^na_iright)<left(frac{sumlimits_{i=1}^n(1-a_i)+1+sumlimits_{i=1}^na_i}{n+1}right)^{n+1}=left(frac{n+1}{n+1}right)^{n+1}=1.$$
The equality does not occur because $1-a_i<1+sumlimits_{i=1}^na_i.$
edited Nov 30 '18 at 17:57
answered Nov 30 '18 at 17:22
Michael RozenbergMichael Rozenberg
103k1891195
103k1891195
$begingroup$
Sorry, I edited the original question
$endgroup$
– cscisgqr
Nov 30 '18 at 17:22
$begingroup$
@cscisgqr I also fixed. See now.
$endgroup$
– Michael Rozenberg
Nov 30 '18 at 17:34
$begingroup$
How did numerator become n+1? @Michael Rozenberg
$endgroup$
– cscisgqr
Nov 30 '18 at 17:47
$begingroup$
@cscisgqr It's $1+sumlimits_{i=1}^n1=1+n$ and $-sumlimits_{i=1}^na_i+sumlimits_{i=1}^na_i=0.$
$endgroup$
– Michael Rozenberg
Nov 30 '18 at 17:50
1
$begingroup$
Nice application of AM-GM +1
$endgroup$
– Macavity
Nov 30 '18 at 17:56
add a comment |
$begingroup$
Sorry, I edited the original question
$endgroup$
– cscisgqr
Nov 30 '18 at 17:22
$begingroup$
@cscisgqr I also fixed. See now.
$endgroup$
– Michael Rozenberg
Nov 30 '18 at 17:34
$begingroup$
How did numerator become n+1? @Michael Rozenberg
$endgroup$
– cscisgqr
Nov 30 '18 at 17:47
$begingroup$
@cscisgqr It's $1+sumlimits_{i=1}^n1=1+n$ and $-sumlimits_{i=1}^na_i+sumlimits_{i=1}^na_i=0.$
$endgroup$
– Michael Rozenberg
Nov 30 '18 at 17:50
1
$begingroup$
Nice application of AM-GM +1
$endgroup$
– Macavity
Nov 30 '18 at 17:56
$begingroup$
Sorry, I edited the original question
$endgroup$
– cscisgqr
Nov 30 '18 at 17:22
$begingroup$
Sorry, I edited the original question
$endgroup$
– cscisgqr
Nov 30 '18 at 17:22
$begingroup$
@cscisgqr I also fixed. See now.
$endgroup$
– Michael Rozenberg
Nov 30 '18 at 17:34
$begingroup$
@cscisgqr I also fixed. See now.
$endgroup$
– Michael Rozenberg
Nov 30 '18 at 17:34
$begingroup$
How did numerator become n+1? @Michael Rozenberg
$endgroup$
– cscisgqr
Nov 30 '18 at 17:47
$begingroup$
How did numerator become n+1? @Michael Rozenberg
$endgroup$
– cscisgqr
Nov 30 '18 at 17:47
$begingroup$
@cscisgqr It's $1+sumlimits_{i=1}^n1=1+n$ and $-sumlimits_{i=1}^na_i+sumlimits_{i=1}^na_i=0.$
$endgroup$
– Michael Rozenberg
Nov 30 '18 at 17:50
$begingroup$
@cscisgqr It's $1+sumlimits_{i=1}^n1=1+n$ and $-sumlimits_{i=1}^na_i+sumlimits_{i=1}^na_i=0.$
$endgroup$
– Michael Rozenberg
Nov 30 '18 at 17:50
1
1
$begingroup$
Nice application of AM-GM +1
$endgroup$
– Macavity
Nov 30 '18 at 17:56
$begingroup$
Nice application of AM-GM +1
$endgroup$
– Macavity
Nov 30 '18 at 17:56
add a comment |
$begingroup$
Note that $1+sum_1^na_i<prod_1^n(1+a_i)$
$implies (prod_1^n(1-a_i))(1+sum_1^na_i)<(prod_1^n(1-a_i))(prod_1^n(1+a_i))=prod_1^n(1-a_i^2)<1$
$endgroup$
$begingroup$
Beautiful solution! +1.
$endgroup$
– Michael Rozenberg
Nov 30 '18 at 18:02
add a comment |
$begingroup$
Note that $1+sum_1^na_i<prod_1^n(1+a_i)$
$implies (prod_1^n(1-a_i))(1+sum_1^na_i)<(prod_1^n(1-a_i))(prod_1^n(1+a_i))=prod_1^n(1-a_i^2)<1$
$endgroup$
$begingroup$
Beautiful solution! +1.
$endgroup$
– Michael Rozenberg
Nov 30 '18 at 18:02
add a comment |
$begingroup$
Note that $1+sum_1^na_i<prod_1^n(1+a_i)$
$implies (prod_1^n(1-a_i))(1+sum_1^na_i)<(prod_1^n(1-a_i))(prod_1^n(1+a_i))=prod_1^n(1-a_i^2)<1$
$endgroup$
Note that $1+sum_1^na_i<prod_1^n(1+a_i)$
$implies (prod_1^n(1-a_i))(1+sum_1^na_i)<(prod_1^n(1-a_i))(prod_1^n(1+a_i))=prod_1^n(1-a_i^2)<1$
answered Nov 30 '18 at 18:00
Shubham JohriShubham Johri
5,172717
5,172717
$begingroup$
Beautiful solution! +1.
$endgroup$
– Michael Rozenberg
Nov 30 '18 at 18:02
add a comment |
$begingroup$
Beautiful solution! +1.
$endgroup$
– Michael Rozenberg
Nov 30 '18 at 18:02
$begingroup$
Beautiful solution! +1.
$endgroup$
– Michael Rozenberg
Nov 30 '18 at 18:02
$begingroup$
Beautiful solution! +1.
$endgroup$
– Michael Rozenberg
Nov 30 '18 at 18:02
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3020348%2fprove-or-disprove-an-inequality-problem%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Wouldn't the case where all $a_i$ are equal translate to proving $(1-(1-a)^n)(1+na)<1$?
$endgroup$
– Shubham Johri
Nov 30 '18 at 17:22
$begingroup$
Sorry, I edited the original question @ShubhamJohri
$endgroup$
– cscisgqr
Nov 30 '18 at 17:26