Measurable sets in pratice with Lebesgue-Stieltjes measure
$begingroup$
If we consider $F colon mathbb{R} to mathbb{R},$ defined as
$$
F(x) = left{begin{array}{cc} 0, & mbox{if } x < 0 \ 3, & mbox{if } 0 le x < 4 \ 8, &mbox{otherwise.} end{array}right.,
$$
and let $mu_F$ the corresponding Lebesgue-Stieltjes measure. What are the measurable sets in this measure? That is, the sets $E$ satisfying
$$ mu_F(A) = mu_F(A cap E) + mu_F(A setminus E) $$
$forall A in mathbb{R}.$
real-analysis measure-theory lebesgue-measure
$endgroup$
add a comment |
$begingroup$
If we consider $F colon mathbb{R} to mathbb{R},$ defined as
$$
F(x) = left{begin{array}{cc} 0, & mbox{if } x < 0 \ 3, & mbox{if } 0 le x < 4 \ 8, &mbox{otherwise.} end{array}right.,
$$
and let $mu_F$ the corresponding Lebesgue-Stieltjes measure. What are the measurable sets in this measure? That is, the sets $E$ satisfying
$$ mu_F(A) = mu_F(A cap E) + mu_F(A setminus E) $$
$forall A in mathbb{R}.$
real-analysis measure-theory lebesgue-measure
$endgroup$
add a comment |
$begingroup$
If we consider $F colon mathbb{R} to mathbb{R},$ defined as
$$
F(x) = left{begin{array}{cc} 0, & mbox{if } x < 0 \ 3, & mbox{if } 0 le x < 4 \ 8, &mbox{otherwise.} end{array}right.,
$$
and let $mu_F$ the corresponding Lebesgue-Stieltjes measure. What are the measurable sets in this measure? That is, the sets $E$ satisfying
$$ mu_F(A) = mu_F(A cap E) + mu_F(A setminus E) $$
$forall A in mathbb{R}.$
real-analysis measure-theory lebesgue-measure
$endgroup$
If we consider $F colon mathbb{R} to mathbb{R},$ defined as
$$
F(x) = left{begin{array}{cc} 0, & mbox{if } x < 0 \ 3, & mbox{if } 0 le x < 4 \ 8, &mbox{otherwise.} end{array}right.,
$$
and let $mu_F$ the corresponding Lebesgue-Stieltjes measure. What are the measurable sets in this measure? That is, the sets $E$ satisfying
$$ mu_F(A) = mu_F(A cap E) + mu_F(A setminus E) $$
$forall A in mathbb{R}.$
real-analysis measure-theory lebesgue-measure
real-analysis measure-theory lebesgue-measure
asked Dec 3 '18 at 3:08
674123173797 - 4674123173797 - 4
1458
1458
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
$mu_F(A)=3delta_0(A)+4delta_4(A)$ where $delta_x(A)=1$ if $x in A$ and $0$ otherwise. Since $delta_x(A)= delta_x(Acap E)+delta_x(Asetminus E)$ for all $A,E subset mathbb R$ it follows that all sets are measurable for $mu_F$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3023561%2fmeasurable-sets-in-pratice-with-lebesgue-stieltjes-measure%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$mu_F(A)=3delta_0(A)+4delta_4(A)$ where $delta_x(A)=1$ if $x in A$ and $0$ otherwise. Since $delta_x(A)= delta_x(Acap E)+delta_x(Asetminus E)$ for all $A,E subset mathbb R$ it follows that all sets are measurable for $mu_F$.
$endgroup$
add a comment |
$begingroup$
$mu_F(A)=3delta_0(A)+4delta_4(A)$ where $delta_x(A)=1$ if $x in A$ and $0$ otherwise. Since $delta_x(A)= delta_x(Acap E)+delta_x(Asetminus E)$ for all $A,E subset mathbb R$ it follows that all sets are measurable for $mu_F$.
$endgroup$
add a comment |
$begingroup$
$mu_F(A)=3delta_0(A)+4delta_4(A)$ where $delta_x(A)=1$ if $x in A$ and $0$ otherwise. Since $delta_x(A)= delta_x(Acap E)+delta_x(Asetminus E)$ for all $A,E subset mathbb R$ it follows that all sets are measurable for $mu_F$.
$endgroup$
$mu_F(A)=3delta_0(A)+4delta_4(A)$ where $delta_x(A)=1$ if $x in A$ and $0$ otherwise. Since $delta_x(A)= delta_x(Acap E)+delta_x(Asetminus E)$ for all $A,E subset mathbb R$ it follows that all sets are measurable for $mu_F$.
answered Dec 3 '18 at 6:25
Kavi Rama MurthyKavi Rama Murthy
61.3k42262
61.3k42262
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3023561%2fmeasurable-sets-in-pratice-with-lebesgue-stieltjes-measure%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown