Laplace transform of $y'''+3y''+3y'=12e^{-t}$ where $y(0)=1, y'(0)=0, y''(0)=-3$












0












$begingroup$


I obtained
$frac{(s+4)(s^{2}+3)}{s(s+1)(s^{2}+3s+3)}$



Im not sure how to simplify $(s^{2}+3s+3)$ to use an inverse laplace.



I took the Laplace Transform of my equation and got the following.



$[s^{3}Y(s) - s^{2}y(0) - sy'(0) - y''(0)] +3[s^{2}Y(s) - sy(0) -y'(0)] + 3[sY(s)-y(0)]= frac{12}{(s+1)}$



$Y(s)[s^{3}+3s^{2}+3s]-s^{2}+3-3s-3=frac{12}{(s+1)}$



$Y(s)[s^{3}+3s^{2}+3s]=frac{(s+4)(s^2+3)}{s+1}$



Any help would be greatly appreciated.










share|cite|improve this question











$endgroup$












  • $begingroup$
    How about starting with partial fraction decomposition?
    $endgroup$
    – Michael Burr
    Dec 3 '18 at 1:54
















0












$begingroup$


I obtained
$frac{(s+4)(s^{2}+3)}{s(s+1)(s^{2}+3s+3)}$



Im not sure how to simplify $(s^{2}+3s+3)$ to use an inverse laplace.



I took the Laplace Transform of my equation and got the following.



$[s^{3}Y(s) - s^{2}y(0) - sy'(0) - y''(0)] +3[s^{2}Y(s) - sy(0) -y'(0)] + 3[sY(s)-y(0)]= frac{12}{(s+1)}$



$Y(s)[s^{3}+3s^{2}+3s]-s^{2}+3-3s-3=frac{12}{(s+1)}$



$Y(s)[s^{3}+3s^{2}+3s]=frac{(s+4)(s^2+3)}{s+1}$



Any help would be greatly appreciated.










share|cite|improve this question











$endgroup$












  • $begingroup$
    How about starting with partial fraction decomposition?
    $endgroup$
    – Michael Burr
    Dec 3 '18 at 1:54














0












0








0


0



$begingroup$


I obtained
$frac{(s+4)(s^{2}+3)}{s(s+1)(s^{2}+3s+3)}$



Im not sure how to simplify $(s^{2}+3s+3)$ to use an inverse laplace.



I took the Laplace Transform of my equation and got the following.



$[s^{3}Y(s) - s^{2}y(0) - sy'(0) - y''(0)] +3[s^{2}Y(s) - sy(0) -y'(0)] + 3[sY(s)-y(0)]= frac{12}{(s+1)}$



$Y(s)[s^{3}+3s^{2}+3s]-s^{2}+3-3s-3=frac{12}{(s+1)}$



$Y(s)[s^{3}+3s^{2}+3s]=frac{(s+4)(s^2+3)}{s+1}$



Any help would be greatly appreciated.










share|cite|improve this question











$endgroup$




I obtained
$frac{(s+4)(s^{2}+3)}{s(s+1)(s^{2}+3s+3)}$



Im not sure how to simplify $(s^{2}+3s+3)$ to use an inverse laplace.



I took the Laplace Transform of my equation and got the following.



$[s^{3}Y(s) - s^{2}y(0) - sy'(0) - y''(0)] +3[s^{2}Y(s) - sy(0) -y'(0)] + 3[sY(s)-y(0)]= frac{12}{(s+1)}$



$Y(s)[s^{3}+3s^{2}+3s]-s^{2}+3-3s-3=frac{12}{(s+1)}$



$Y(s)[s^{3}+3s^{2}+3s]=frac{(s+4)(s^2+3)}{s+1}$



Any help would be greatly appreciated.







ordinary-differential-equations






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 3 '18 at 1:51







Andrea Zamora

















asked Dec 3 '18 at 1:44









Andrea ZamoraAndrea Zamora

11




11












  • $begingroup$
    How about starting with partial fraction decomposition?
    $endgroup$
    – Michael Burr
    Dec 3 '18 at 1:54


















  • $begingroup$
    How about starting with partial fraction decomposition?
    $endgroup$
    – Michael Burr
    Dec 3 '18 at 1:54
















$begingroup$
How about starting with partial fraction decomposition?
$endgroup$
– Michael Burr
Dec 3 '18 at 1:54




$begingroup$
How about starting with partial fraction decomposition?
$endgroup$
– Michael Burr
Dec 3 '18 at 1:54










1 Answer
1






active

oldest

votes


















0












$begingroup$

I don't know if it's correct but I tried this



$frac{(s+1)(s^2+3)}{s(s+1)(s^2+3s+3)}=frac{4}{s}-frac{12}{s+1}+frac{9s+15}{s^2+3s+3}$



and the first and second fractions



$mathcal{L}(4)=frac{4}{s} \ mathcal{L}(-12e^{-t})=-frac{12}{s+1}$



you can do this for the third one



$frac{9s+15}{s^2+3s+3} = frac{9s}{s^2+3s+3}+frac{15}{s^2+3s+3}=9 frac{s}{s^2+3s+3}+15 frac{1}{s^2+3s+3} $



let's take second fraction:
$frac{1}{s^{2}+3s+3}=frac{1}{(s+frac{3}{2})^{2}+frac{3}{4}}=frac{2}{sqrt{3}}mathcal{L}(e^{-frac{3}{2}t}sin(frac{sqrt{3}}{2}t))$



and for the first one



$frac{s+frac{3}{2}-frac{3}{2}}{(s+frac{3}{2})^{2}+frac{3}{4}}=frac{(s+frac{3}{2})}{(s+frac{3}{2})^{2}+frac{3}{4}}-frac{frac{3}{2}}{(s+frac{3}{2})^{2}+frac{3}{4}}=mathcal{L}(e^{-frac{3}{2}t}cos(frac{sqrt{3}}{2}t))-sqrt{3}mathcal{L}(e^{-frac{3}{2}t}sin(frac{sqrt{3}}{2}t)) $



I'd do that. Sorry if I made some mistake.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    What do you think?
    $endgroup$
    – Emmanuel Misley
    Dec 3 '18 at 23:39











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3023491%2flaplace-transform-of-y3y3y-12e-t-where-y0-1-y0-0-y0-3%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









0












$begingroup$

I don't know if it's correct but I tried this



$frac{(s+1)(s^2+3)}{s(s+1)(s^2+3s+3)}=frac{4}{s}-frac{12}{s+1}+frac{9s+15}{s^2+3s+3}$



and the first and second fractions



$mathcal{L}(4)=frac{4}{s} \ mathcal{L}(-12e^{-t})=-frac{12}{s+1}$



you can do this for the third one



$frac{9s+15}{s^2+3s+3} = frac{9s}{s^2+3s+3}+frac{15}{s^2+3s+3}=9 frac{s}{s^2+3s+3}+15 frac{1}{s^2+3s+3} $



let's take second fraction:
$frac{1}{s^{2}+3s+3}=frac{1}{(s+frac{3}{2})^{2}+frac{3}{4}}=frac{2}{sqrt{3}}mathcal{L}(e^{-frac{3}{2}t}sin(frac{sqrt{3}}{2}t))$



and for the first one



$frac{s+frac{3}{2}-frac{3}{2}}{(s+frac{3}{2})^{2}+frac{3}{4}}=frac{(s+frac{3}{2})}{(s+frac{3}{2})^{2}+frac{3}{4}}-frac{frac{3}{2}}{(s+frac{3}{2})^{2}+frac{3}{4}}=mathcal{L}(e^{-frac{3}{2}t}cos(frac{sqrt{3}}{2}t))-sqrt{3}mathcal{L}(e^{-frac{3}{2}t}sin(frac{sqrt{3}}{2}t)) $



I'd do that. Sorry if I made some mistake.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    What do you think?
    $endgroup$
    – Emmanuel Misley
    Dec 3 '18 at 23:39
















0












$begingroup$

I don't know if it's correct but I tried this



$frac{(s+1)(s^2+3)}{s(s+1)(s^2+3s+3)}=frac{4}{s}-frac{12}{s+1}+frac{9s+15}{s^2+3s+3}$



and the first and second fractions



$mathcal{L}(4)=frac{4}{s} \ mathcal{L}(-12e^{-t})=-frac{12}{s+1}$



you can do this for the third one



$frac{9s+15}{s^2+3s+3} = frac{9s}{s^2+3s+3}+frac{15}{s^2+3s+3}=9 frac{s}{s^2+3s+3}+15 frac{1}{s^2+3s+3} $



let's take second fraction:
$frac{1}{s^{2}+3s+3}=frac{1}{(s+frac{3}{2})^{2}+frac{3}{4}}=frac{2}{sqrt{3}}mathcal{L}(e^{-frac{3}{2}t}sin(frac{sqrt{3}}{2}t))$



and for the first one



$frac{s+frac{3}{2}-frac{3}{2}}{(s+frac{3}{2})^{2}+frac{3}{4}}=frac{(s+frac{3}{2})}{(s+frac{3}{2})^{2}+frac{3}{4}}-frac{frac{3}{2}}{(s+frac{3}{2})^{2}+frac{3}{4}}=mathcal{L}(e^{-frac{3}{2}t}cos(frac{sqrt{3}}{2}t))-sqrt{3}mathcal{L}(e^{-frac{3}{2}t}sin(frac{sqrt{3}}{2}t)) $



I'd do that. Sorry if I made some mistake.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    What do you think?
    $endgroup$
    – Emmanuel Misley
    Dec 3 '18 at 23:39














0












0








0





$begingroup$

I don't know if it's correct but I tried this



$frac{(s+1)(s^2+3)}{s(s+1)(s^2+3s+3)}=frac{4}{s}-frac{12}{s+1}+frac{9s+15}{s^2+3s+3}$



and the first and second fractions



$mathcal{L}(4)=frac{4}{s} \ mathcal{L}(-12e^{-t})=-frac{12}{s+1}$



you can do this for the third one



$frac{9s+15}{s^2+3s+3} = frac{9s}{s^2+3s+3}+frac{15}{s^2+3s+3}=9 frac{s}{s^2+3s+3}+15 frac{1}{s^2+3s+3} $



let's take second fraction:
$frac{1}{s^{2}+3s+3}=frac{1}{(s+frac{3}{2})^{2}+frac{3}{4}}=frac{2}{sqrt{3}}mathcal{L}(e^{-frac{3}{2}t}sin(frac{sqrt{3}}{2}t))$



and for the first one



$frac{s+frac{3}{2}-frac{3}{2}}{(s+frac{3}{2})^{2}+frac{3}{4}}=frac{(s+frac{3}{2})}{(s+frac{3}{2})^{2}+frac{3}{4}}-frac{frac{3}{2}}{(s+frac{3}{2})^{2}+frac{3}{4}}=mathcal{L}(e^{-frac{3}{2}t}cos(frac{sqrt{3}}{2}t))-sqrt{3}mathcal{L}(e^{-frac{3}{2}t}sin(frac{sqrt{3}}{2}t)) $



I'd do that. Sorry if I made some mistake.






share|cite|improve this answer











$endgroup$



I don't know if it's correct but I tried this



$frac{(s+1)(s^2+3)}{s(s+1)(s^2+3s+3)}=frac{4}{s}-frac{12}{s+1}+frac{9s+15}{s^2+3s+3}$



and the first and second fractions



$mathcal{L}(4)=frac{4}{s} \ mathcal{L}(-12e^{-t})=-frac{12}{s+1}$



you can do this for the third one



$frac{9s+15}{s^2+3s+3} = frac{9s}{s^2+3s+3}+frac{15}{s^2+3s+3}=9 frac{s}{s^2+3s+3}+15 frac{1}{s^2+3s+3} $



let's take second fraction:
$frac{1}{s^{2}+3s+3}=frac{1}{(s+frac{3}{2})^{2}+frac{3}{4}}=frac{2}{sqrt{3}}mathcal{L}(e^{-frac{3}{2}t}sin(frac{sqrt{3}}{2}t))$



and for the first one



$frac{s+frac{3}{2}-frac{3}{2}}{(s+frac{3}{2})^{2}+frac{3}{4}}=frac{(s+frac{3}{2})}{(s+frac{3}{2})^{2}+frac{3}{4}}-frac{frac{3}{2}}{(s+frac{3}{2})^{2}+frac{3}{4}}=mathcal{L}(e^{-frac{3}{2}t}cos(frac{sqrt{3}}{2}t))-sqrt{3}mathcal{L}(e^{-frac{3}{2}t}sin(frac{sqrt{3}}{2}t)) $



I'd do that. Sorry if I made some mistake.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Dec 3 '18 at 4:34

























answered Dec 3 '18 at 4:09









Emmanuel MisleyEmmanuel Misley

12




12












  • $begingroup$
    What do you think?
    $endgroup$
    – Emmanuel Misley
    Dec 3 '18 at 23:39


















  • $begingroup$
    What do you think?
    $endgroup$
    – Emmanuel Misley
    Dec 3 '18 at 23:39
















$begingroup$
What do you think?
$endgroup$
– Emmanuel Misley
Dec 3 '18 at 23:39




$begingroup$
What do you think?
$endgroup$
– Emmanuel Misley
Dec 3 '18 at 23:39


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3023491%2flaplace-transform-of-y3y3y-12e-t-where-y0-1-y0-0-y0-3%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

How to change which sound is reproduced for terminal bell?

Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents

Can I use Tabulator js library in my java Spring + Thymeleaf project?