Trivial Embeddings in Morrey & Campanato spaces
up vote
0
down vote
favorite
I'm taking a Nonlinear PDEs course this semester and the last time our professor introduced us to Morrey & Campanato Spaces. We have for $lambda gt 0$ that:
- The Morrey space $L^{2,lambda}(Omega)$ consists of all functions $fin L^2(Omega)$ for which the seminorm
$[f]_{L^{2,lambda}}=sup_{x in Omega} sup_{r lt diamOmega} frac{1}{r^lambda} int_{B(x,r)cap Omega} |f|^2 dy lt infty$
- The Campanato space $mathcal L^{2,lambda}(Omega)$ consists of all functions $fin L^2(Omega)$ for which the seminorm
$[f]_{mathcal L^{2,lambda}}=sup_{x in Omega} sup_{r lt diamOmega} frac{1}{r^lambda} int_{B(x,r)cap Omega} |f-f_{x,r}|^2 dy lt infty$
where $f_{x,r}:=frac{1}{mathcal L^n(B(x,r)capOmega)} int_{B(x,r)cap Omega} f dy$ and $Omega subset mathbb R^n$
The first examples that the professor gave are:
- $fin L^{infty} Rightarrow f in L^{2,lambda} ;;forall lambda in (0,n]$
- $f in W^{1,infty} Rightarrow f in mathcal L^{2,n+2}$
- $f in C^{0,alpha} Rightarrow f in mathcal L^{2,n+2alpha}$
Although they seem to be quite trivial since there is no special proof of the above nowhere, I have trouble understanding them. I think this double $sup$ in the definition confuses me a lot because I don't know how to handle them. Why do these 3 examples hold?
I only have some thoughts about 2.:
If $f in W^{1,infty}(Omega)$ then $f$ is a Lipschitz function. So we write
$|f(x)-f_{x,r}(x)|=|frac{1}{mathcal L^n(B(x,r)cap Omega)} int_{B(x,r)cap Omega} f(x)-f(y) dy| le frac{1}{mathcal L^n(B(x,r)cap Omega)} int_{B(x,r)cap Omega} |f(x)-f(y)| dy le frac{1}{mathcal L^n(B(x,r)cap Omega)} int_{B(x,r)cap Omega} M|x-y| dy le frac{1}{mathcal L^n(B(x,r)cap Omega)} int_{B(x,r)cap Omega} Mr; dy=Mr$
Hence $sup_{x in Omega} sup_{r lt diamOmega} frac{1}{r^lambda} int_{B(x,r)cap Omega} |f-f_{x,r}|^2 dy le sup_{x in Omega} sup_{r lt diamOmega} frac{1}{r^lambda} int_{B(x,r)cap Omega} M^2 r^2 dy=sup_{x in Omega} sup_{r lt diamOmega} frac{1}{r^{lambda-2}} M^2 mathcal L^n(B(x,r)cap Omega)$
At this point I've been stuck. How do I proceed? Could somebody provide me some hints in order to prove the rest too?
Any help is much appreciated. Thanks in advance!
functional-analysis analysis pde sobolev-spaces
add a comment |
up vote
0
down vote
favorite
I'm taking a Nonlinear PDEs course this semester and the last time our professor introduced us to Morrey & Campanato Spaces. We have for $lambda gt 0$ that:
- The Morrey space $L^{2,lambda}(Omega)$ consists of all functions $fin L^2(Omega)$ for which the seminorm
$[f]_{L^{2,lambda}}=sup_{x in Omega} sup_{r lt diamOmega} frac{1}{r^lambda} int_{B(x,r)cap Omega} |f|^2 dy lt infty$
- The Campanato space $mathcal L^{2,lambda}(Omega)$ consists of all functions $fin L^2(Omega)$ for which the seminorm
$[f]_{mathcal L^{2,lambda}}=sup_{x in Omega} sup_{r lt diamOmega} frac{1}{r^lambda} int_{B(x,r)cap Omega} |f-f_{x,r}|^2 dy lt infty$
where $f_{x,r}:=frac{1}{mathcal L^n(B(x,r)capOmega)} int_{B(x,r)cap Omega} f dy$ and $Omega subset mathbb R^n$
The first examples that the professor gave are:
- $fin L^{infty} Rightarrow f in L^{2,lambda} ;;forall lambda in (0,n]$
- $f in W^{1,infty} Rightarrow f in mathcal L^{2,n+2}$
- $f in C^{0,alpha} Rightarrow f in mathcal L^{2,n+2alpha}$
Although they seem to be quite trivial since there is no special proof of the above nowhere, I have trouble understanding them. I think this double $sup$ in the definition confuses me a lot because I don't know how to handle them. Why do these 3 examples hold?
I only have some thoughts about 2.:
If $f in W^{1,infty}(Omega)$ then $f$ is a Lipschitz function. So we write
$|f(x)-f_{x,r}(x)|=|frac{1}{mathcal L^n(B(x,r)cap Omega)} int_{B(x,r)cap Omega} f(x)-f(y) dy| le frac{1}{mathcal L^n(B(x,r)cap Omega)} int_{B(x,r)cap Omega} |f(x)-f(y)| dy le frac{1}{mathcal L^n(B(x,r)cap Omega)} int_{B(x,r)cap Omega} M|x-y| dy le frac{1}{mathcal L^n(B(x,r)cap Omega)} int_{B(x,r)cap Omega} Mr; dy=Mr$
Hence $sup_{x in Omega} sup_{r lt diamOmega} frac{1}{r^lambda} int_{B(x,r)cap Omega} |f-f_{x,r}|^2 dy le sup_{x in Omega} sup_{r lt diamOmega} frac{1}{r^lambda} int_{B(x,r)cap Omega} M^2 r^2 dy=sup_{x in Omega} sup_{r lt diamOmega} frac{1}{r^{lambda-2}} M^2 mathcal L^n(B(x,r)cap Omega)$
At this point I've been stuck. How do I proceed? Could somebody provide me some hints in order to prove the rest too?
Any help is much appreciated. Thanks in advance!
functional-analysis analysis pde sobolev-spaces
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
I'm taking a Nonlinear PDEs course this semester and the last time our professor introduced us to Morrey & Campanato Spaces. We have for $lambda gt 0$ that:
- The Morrey space $L^{2,lambda}(Omega)$ consists of all functions $fin L^2(Omega)$ for which the seminorm
$[f]_{L^{2,lambda}}=sup_{x in Omega} sup_{r lt diamOmega} frac{1}{r^lambda} int_{B(x,r)cap Omega} |f|^2 dy lt infty$
- The Campanato space $mathcal L^{2,lambda}(Omega)$ consists of all functions $fin L^2(Omega)$ for which the seminorm
$[f]_{mathcal L^{2,lambda}}=sup_{x in Omega} sup_{r lt diamOmega} frac{1}{r^lambda} int_{B(x,r)cap Omega} |f-f_{x,r}|^2 dy lt infty$
where $f_{x,r}:=frac{1}{mathcal L^n(B(x,r)capOmega)} int_{B(x,r)cap Omega} f dy$ and $Omega subset mathbb R^n$
The first examples that the professor gave are:
- $fin L^{infty} Rightarrow f in L^{2,lambda} ;;forall lambda in (0,n]$
- $f in W^{1,infty} Rightarrow f in mathcal L^{2,n+2}$
- $f in C^{0,alpha} Rightarrow f in mathcal L^{2,n+2alpha}$
Although they seem to be quite trivial since there is no special proof of the above nowhere, I have trouble understanding them. I think this double $sup$ in the definition confuses me a lot because I don't know how to handle them. Why do these 3 examples hold?
I only have some thoughts about 2.:
If $f in W^{1,infty}(Omega)$ then $f$ is a Lipschitz function. So we write
$|f(x)-f_{x,r}(x)|=|frac{1}{mathcal L^n(B(x,r)cap Omega)} int_{B(x,r)cap Omega} f(x)-f(y) dy| le frac{1}{mathcal L^n(B(x,r)cap Omega)} int_{B(x,r)cap Omega} |f(x)-f(y)| dy le frac{1}{mathcal L^n(B(x,r)cap Omega)} int_{B(x,r)cap Omega} M|x-y| dy le frac{1}{mathcal L^n(B(x,r)cap Omega)} int_{B(x,r)cap Omega} Mr; dy=Mr$
Hence $sup_{x in Omega} sup_{r lt diamOmega} frac{1}{r^lambda} int_{B(x,r)cap Omega} |f-f_{x,r}|^2 dy le sup_{x in Omega} sup_{r lt diamOmega} frac{1}{r^lambda} int_{B(x,r)cap Omega} M^2 r^2 dy=sup_{x in Omega} sup_{r lt diamOmega} frac{1}{r^{lambda-2}} M^2 mathcal L^n(B(x,r)cap Omega)$
At this point I've been stuck. How do I proceed? Could somebody provide me some hints in order to prove the rest too?
Any help is much appreciated. Thanks in advance!
functional-analysis analysis pde sobolev-spaces
I'm taking a Nonlinear PDEs course this semester and the last time our professor introduced us to Morrey & Campanato Spaces. We have for $lambda gt 0$ that:
- The Morrey space $L^{2,lambda}(Omega)$ consists of all functions $fin L^2(Omega)$ for which the seminorm
$[f]_{L^{2,lambda}}=sup_{x in Omega} sup_{r lt diamOmega} frac{1}{r^lambda} int_{B(x,r)cap Omega} |f|^2 dy lt infty$
- The Campanato space $mathcal L^{2,lambda}(Omega)$ consists of all functions $fin L^2(Omega)$ for which the seminorm
$[f]_{mathcal L^{2,lambda}}=sup_{x in Omega} sup_{r lt diamOmega} frac{1}{r^lambda} int_{B(x,r)cap Omega} |f-f_{x,r}|^2 dy lt infty$
where $f_{x,r}:=frac{1}{mathcal L^n(B(x,r)capOmega)} int_{B(x,r)cap Omega} f dy$ and $Omega subset mathbb R^n$
The first examples that the professor gave are:
- $fin L^{infty} Rightarrow f in L^{2,lambda} ;;forall lambda in (0,n]$
- $f in W^{1,infty} Rightarrow f in mathcal L^{2,n+2}$
- $f in C^{0,alpha} Rightarrow f in mathcal L^{2,n+2alpha}$
Although they seem to be quite trivial since there is no special proof of the above nowhere, I have trouble understanding them. I think this double $sup$ in the definition confuses me a lot because I don't know how to handle them. Why do these 3 examples hold?
I only have some thoughts about 2.:
If $f in W^{1,infty}(Omega)$ then $f$ is a Lipschitz function. So we write
$|f(x)-f_{x,r}(x)|=|frac{1}{mathcal L^n(B(x,r)cap Omega)} int_{B(x,r)cap Omega} f(x)-f(y) dy| le frac{1}{mathcal L^n(B(x,r)cap Omega)} int_{B(x,r)cap Omega} |f(x)-f(y)| dy le frac{1}{mathcal L^n(B(x,r)cap Omega)} int_{B(x,r)cap Omega} M|x-y| dy le frac{1}{mathcal L^n(B(x,r)cap Omega)} int_{B(x,r)cap Omega} Mr; dy=Mr$
Hence $sup_{x in Omega} sup_{r lt diamOmega} frac{1}{r^lambda} int_{B(x,r)cap Omega} |f-f_{x,r}|^2 dy le sup_{x in Omega} sup_{r lt diamOmega} frac{1}{r^lambda} int_{B(x,r)cap Omega} M^2 r^2 dy=sup_{x in Omega} sup_{r lt diamOmega} frac{1}{r^{lambda-2}} M^2 mathcal L^n(B(x,r)cap Omega)$
At this point I've been stuck. How do I proceed? Could somebody provide me some hints in order to prove the rest too?
Any help is much appreciated. Thanks in advance!
functional-analysis analysis pde sobolev-spaces
functional-analysis analysis pde sobolev-spaces
edited 20 hours ago
asked yesterday
kaithkolesidou
911411
911411
add a comment |
add a comment |
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2994412%2ftrivial-embeddings-in-morrey-campanato-spaces%23new-answer', 'question_page');
}
);
Post as a guest
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password