Trivial Embeddings in Morrey & Campanato spaces











up vote
0
down vote

favorite
1












I'm taking a Nonlinear PDEs course this semester and the last time our professor introduced us to Morrey & Campanato Spaces. We have for $lambda gt 0$ that:




  • The Morrey space $L^{2,lambda}(Omega)$ consists of all functions $fin L^2(Omega)$ for which the seminorm


$[f]_{L^{2,lambda}}=sup_{x in Omega} sup_{r lt diamOmega} frac{1}{r^lambda} int_{B(x,r)cap Omega} |f|^2 dy lt infty$




  • The Campanato space $mathcal L^{2,lambda}(Omega)$ consists of all functions $fin L^2(Omega)$ for which the seminorm


$[f]_{mathcal L^{2,lambda}}=sup_{x in Omega} sup_{r lt diamOmega} frac{1}{r^lambda} int_{B(x,r)cap Omega} |f-f_{x,r}|^2 dy lt infty$



where $f_{x,r}:=frac{1}{mathcal L^n(B(x,r)capOmega)} int_{B(x,r)cap Omega} f dy$ and $Omega subset mathbb R^n$



The first examples that the professor gave are:




  1. $fin L^{infty} Rightarrow f in L^{2,lambda} ;;forall lambda in (0,n]$

  2. $f in W^{1,infty} Rightarrow f in mathcal L^{2,n+2}$

  3. $f in C^{0,alpha} Rightarrow f in mathcal L^{2,n+2alpha}$


Although they seem to be quite trivial since there is no special proof of the above nowhere, I have trouble understanding them. I think this double $sup$ in the definition confuses me a lot because I don't know how to handle them. Why do these 3 examples hold?



I only have some thoughts about 2.:



If $f in W^{1,infty}(Omega)$ then $f$ is a Lipschitz function. So we write



$|f(x)-f_{x,r}(x)|=|frac{1}{mathcal L^n(B(x,r)cap Omega)} int_{B(x,r)cap Omega} f(x)-f(y) dy| le frac{1}{mathcal L^n(B(x,r)cap Omega)} int_{B(x,r)cap Omega} |f(x)-f(y)| dy le frac{1}{mathcal L^n(B(x,r)cap Omega)} int_{B(x,r)cap Omega} M|x-y| dy le frac{1}{mathcal L^n(B(x,r)cap Omega)} int_{B(x,r)cap Omega} Mr; dy=Mr$



Hence $sup_{x in Omega} sup_{r lt diamOmega} frac{1}{r^lambda} int_{B(x,r)cap Omega} |f-f_{x,r}|^2 dy le sup_{x in Omega} sup_{r lt diamOmega} frac{1}{r^lambda} int_{B(x,r)cap Omega} M^2 r^2 dy=sup_{x in Omega} sup_{r lt diamOmega} frac{1}{r^{lambda-2}} M^2 mathcal L^n(B(x,r)cap Omega)$



At this point I've been stuck. How do I proceed? Could somebody provide me some hints in order to prove the rest too?



Any help is much appreciated. Thanks in advance!










share|cite|improve this question




























    up vote
    0
    down vote

    favorite
    1












    I'm taking a Nonlinear PDEs course this semester and the last time our professor introduced us to Morrey & Campanato Spaces. We have for $lambda gt 0$ that:




    • The Morrey space $L^{2,lambda}(Omega)$ consists of all functions $fin L^2(Omega)$ for which the seminorm


    $[f]_{L^{2,lambda}}=sup_{x in Omega} sup_{r lt diamOmega} frac{1}{r^lambda} int_{B(x,r)cap Omega} |f|^2 dy lt infty$




    • The Campanato space $mathcal L^{2,lambda}(Omega)$ consists of all functions $fin L^2(Omega)$ for which the seminorm


    $[f]_{mathcal L^{2,lambda}}=sup_{x in Omega} sup_{r lt diamOmega} frac{1}{r^lambda} int_{B(x,r)cap Omega} |f-f_{x,r}|^2 dy lt infty$



    where $f_{x,r}:=frac{1}{mathcal L^n(B(x,r)capOmega)} int_{B(x,r)cap Omega} f dy$ and $Omega subset mathbb R^n$



    The first examples that the professor gave are:




    1. $fin L^{infty} Rightarrow f in L^{2,lambda} ;;forall lambda in (0,n]$

    2. $f in W^{1,infty} Rightarrow f in mathcal L^{2,n+2}$

    3. $f in C^{0,alpha} Rightarrow f in mathcal L^{2,n+2alpha}$


    Although they seem to be quite trivial since there is no special proof of the above nowhere, I have trouble understanding them. I think this double $sup$ in the definition confuses me a lot because I don't know how to handle them. Why do these 3 examples hold?



    I only have some thoughts about 2.:



    If $f in W^{1,infty}(Omega)$ then $f$ is a Lipschitz function. So we write



    $|f(x)-f_{x,r}(x)|=|frac{1}{mathcal L^n(B(x,r)cap Omega)} int_{B(x,r)cap Omega} f(x)-f(y) dy| le frac{1}{mathcal L^n(B(x,r)cap Omega)} int_{B(x,r)cap Omega} |f(x)-f(y)| dy le frac{1}{mathcal L^n(B(x,r)cap Omega)} int_{B(x,r)cap Omega} M|x-y| dy le frac{1}{mathcal L^n(B(x,r)cap Omega)} int_{B(x,r)cap Omega} Mr; dy=Mr$



    Hence $sup_{x in Omega} sup_{r lt diamOmega} frac{1}{r^lambda} int_{B(x,r)cap Omega} |f-f_{x,r}|^2 dy le sup_{x in Omega} sup_{r lt diamOmega} frac{1}{r^lambda} int_{B(x,r)cap Omega} M^2 r^2 dy=sup_{x in Omega} sup_{r lt diamOmega} frac{1}{r^{lambda-2}} M^2 mathcal L^n(B(x,r)cap Omega)$



    At this point I've been stuck. How do I proceed? Could somebody provide me some hints in order to prove the rest too?



    Any help is much appreciated. Thanks in advance!










    share|cite|improve this question


























      up vote
      0
      down vote

      favorite
      1









      up vote
      0
      down vote

      favorite
      1






      1





      I'm taking a Nonlinear PDEs course this semester and the last time our professor introduced us to Morrey & Campanato Spaces. We have for $lambda gt 0$ that:




      • The Morrey space $L^{2,lambda}(Omega)$ consists of all functions $fin L^2(Omega)$ for which the seminorm


      $[f]_{L^{2,lambda}}=sup_{x in Omega} sup_{r lt diamOmega} frac{1}{r^lambda} int_{B(x,r)cap Omega} |f|^2 dy lt infty$




      • The Campanato space $mathcal L^{2,lambda}(Omega)$ consists of all functions $fin L^2(Omega)$ for which the seminorm


      $[f]_{mathcal L^{2,lambda}}=sup_{x in Omega} sup_{r lt diamOmega} frac{1}{r^lambda} int_{B(x,r)cap Omega} |f-f_{x,r}|^2 dy lt infty$



      where $f_{x,r}:=frac{1}{mathcal L^n(B(x,r)capOmega)} int_{B(x,r)cap Omega} f dy$ and $Omega subset mathbb R^n$



      The first examples that the professor gave are:




      1. $fin L^{infty} Rightarrow f in L^{2,lambda} ;;forall lambda in (0,n]$

      2. $f in W^{1,infty} Rightarrow f in mathcal L^{2,n+2}$

      3. $f in C^{0,alpha} Rightarrow f in mathcal L^{2,n+2alpha}$


      Although they seem to be quite trivial since there is no special proof of the above nowhere, I have trouble understanding them. I think this double $sup$ in the definition confuses me a lot because I don't know how to handle them. Why do these 3 examples hold?



      I only have some thoughts about 2.:



      If $f in W^{1,infty}(Omega)$ then $f$ is a Lipschitz function. So we write



      $|f(x)-f_{x,r}(x)|=|frac{1}{mathcal L^n(B(x,r)cap Omega)} int_{B(x,r)cap Omega} f(x)-f(y) dy| le frac{1}{mathcal L^n(B(x,r)cap Omega)} int_{B(x,r)cap Omega} |f(x)-f(y)| dy le frac{1}{mathcal L^n(B(x,r)cap Omega)} int_{B(x,r)cap Omega} M|x-y| dy le frac{1}{mathcal L^n(B(x,r)cap Omega)} int_{B(x,r)cap Omega} Mr; dy=Mr$



      Hence $sup_{x in Omega} sup_{r lt diamOmega} frac{1}{r^lambda} int_{B(x,r)cap Omega} |f-f_{x,r}|^2 dy le sup_{x in Omega} sup_{r lt diamOmega} frac{1}{r^lambda} int_{B(x,r)cap Omega} M^2 r^2 dy=sup_{x in Omega} sup_{r lt diamOmega} frac{1}{r^{lambda-2}} M^2 mathcal L^n(B(x,r)cap Omega)$



      At this point I've been stuck. How do I proceed? Could somebody provide me some hints in order to prove the rest too?



      Any help is much appreciated. Thanks in advance!










      share|cite|improve this question















      I'm taking a Nonlinear PDEs course this semester and the last time our professor introduced us to Morrey & Campanato Spaces. We have for $lambda gt 0$ that:




      • The Morrey space $L^{2,lambda}(Omega)$ consists of all functions $fin L^2(Omega)$ for which the seminorm


      $[f]_{L^{2,lambda}}=sup_{x in Omega} sup_{r lt diamOmega} frac{1}{r^lambda} int_{B(x,r)cap Omega} |f|^2 dy lt infty$




      • The Campanato space $mathcal L^{2,lambda}(Omega)$ consists of all functions $fin L^2(Omega)$ for which the seminorm


      $[f]_{mathcal L^{2,lambda}}=sup_{x in Omega} sup_{r lt diamOmega} frac{1}{r^lambda} int_{B(x,r)cap Omega} |f-f_{x,r}|^2 dy lt infty$



      where $f_{x,r}:=frac{1}{mathcal L^n(B(x,r)capOmega)} int_{B(x,r)cap Omega} f dy$ and $Omega subset mathbb R^n$



      The first examples that the professor gave are:




      1. $fin L^{infty} Rightarrow f in L^{2,lambda} ;;forall lambda in (0,n]$

      2. $f in W^{1,infty} Rightarrow f in mathcal L^{2,n+2}$

      3. $f in C^{0,alpha} Rightarrow f in mathcal L^{2,n+2alpha}$


      Although they seem to be quite trivial since there is no special proof of the above nowhere, I have trouble understanding them. I think this double $sup$ in the definition confuses me a lot because I don't know how to handle them. Why do these 3 examples hold?



      I only have some thoughts about 2.:



      If $f in W^{1,infty}(Omega)$ then $f$ is a Lipschitz function. So we write



      $|f(x)-f_{x,r}(x)|=|frac{1}{mathcal L^n(B(x,r)cap Omega)} int_{B(x,r)cap Omega} f(x)-f(y) dy| le frac{1}{mathcal L^n(B(x,r)cap Omega)} int_{B(x,r)cap Omega} |f(x)-f(y)| dy le frac{1}{mathcal L^n(B(x,r)cap Omega)} int_{B(x,r)cap Omega} M|x-y| dy le frac{1}{mathcal L^n(B(x,r)cap Omega)} int_{B(x,r)cap Omega} Mr; dy=Mr$



      Hence $sup_{x in Omega} sup_{r lt diamOmega} frac{1}{r^lambda} int_{B(x,r)cap Omega} |f-f_{x,r}|^2 dy le sup_{x in Omega} sup_{r lt diamOmega} frac{1}{r^lambda} int_{B(x,r)cap Omega} M^2 r^2 dy=sup_{x in Omega} sup_{r lt diamOmega} frac{1}{r^{lambda-2}} M^2 mathcal L^n(B(x,r)cap Omega)$



      At this point I've been stuck. How do I proceed? Could somebody provide me some hints in order to prove the rest too?



      Any help is much appreciated. Thanks in advance!







      functional-analysis analysis pde sobolev-spaces






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 20 hours ago

























      asked yesterday









      kaithkolesidou

      911411




      911411



























          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














           

          draft saved


          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2994412%2ftrivial-embeddings-in-morrey-campanato-spaces%23new-answer', 'question_page');
          }
          );

          Post as a guest





































          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















           

          draft saved


          draft discarded



















































           


          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2994412%2ftrivial-embeddings-in-morrey-campanato-spaces%23new-answer', 'question_page');
          }
          );

          Post as a guest




















































































          Popular posts from this blog

          Biblatex bibliography style without URLs when DOI exists (in Overleaf with Zotero bibliography)

          ComboBox Display Member on multiple fields

          Is it possible to collect Nectar points via Trainline?