Trivial Embeddings in Morrey & Campanato spaces











up vote
0
down vote

favorite
1












I'm taking a Nonlinear PDEs course this semester and the last time our professor introduced us to Morrey & Campanato Spaces. We have for $lambda gt 0$ that:




  • The Morrey space $L^{2,lambda}(Omega)$ consists of all functions $fin L^2(Omega)$ for which the seminorm


$[f]_{L^{2,lambda}}=sup_{x in Omega} sup_{r lt diamOmega} frac{1}{r^lambda} int_{B(x,r)cap Omega} |f|^2 dy lt infty$




  • The Campanato space $mathcal L^{2,lambda}(Omega)$ consists of all functions $fin L^2(Omega)$ for which the seminorm


$[f]_{mathcal L^{2,lambda}}=sup_{x in Omega} sup_{r lt diamOmega} frac{1}{r^lambda} int_{B(x,r)cap Omega} |f-f_{x,r}|^2 dy lt infty$



where $f_{x,r}:=frac{1}{mathcal L^n(B(x,r)capOmega)} int_{B(x,r)cap Omega} f dy$ and $Omega subset mathbb R^n$



The first examples that the professor gave are:




  1. $fin L^{infty} Rightarrow f in L^{2,lambda} ;;forall lambda in (0,n]$

  2. $f in W^{1,infty} Rightarrow f in mathcal L^{2,n+2}$

  3. $f in C^{0,alpha} Rightarrow f in mathcal L^{2,n+2alpha}$


Although they seem to be quite trivial since there is no special proof of the above nowhere, I have trouble understanding them. I think this double $sup$ in the definition confuses me a lot because I don't know how to handle them. Why do these 3 examples hold?



I only have some thoughts about 2.:



If $f in W^{1,infty}(Omega)$ then $f$ is a Lipschitz function. So we write



$|f(x)-f_{x,r}(x)|=|frac{1}{mathcal L^n(B(x,r)cap Omega)} int_{B(x,r)cap Omega} f(x)-f(y) dy| le frac{1}{mathcal L^n(B(x,r)cap Omega)} int_{B(x,r)cap Omega} |f(x)-f(y)| dy le frac{1}{mathcal L^n(B(x,r)cap Omega)} int_{B(x,r)cap Omega} M|x-y| dy le frac{1}{mathcal L^n(B(x,r)cap Omega)} int_{B(x,r)cap Omega} Mr; dy=Mr$



Hence $sup_{x in Omega} sup_{r lt diamOmega} frac{1}{r^lambda} int_{B(x,r)cap Omega} |f-f_{x,r}|^2 dy le sup_{x in Omega} sup_{r lt diamOmega} frac{1}{r^lambda} int_{B(x,r)cap Omega} M^2 r^2 dy=sup_{x in Omega} sup_{r lt diamOmega} frac{1}{r^{lambda-2}} M^2 mathcal L^n(B(x,r)cap Omega)$



At this point I've been stuck. How do I proceed? Could somebody provide me some hints in order to prove the rest too?



Any help is much appreciated. Thanks in advance!










share|cite|improve this question




























    up vote
    0
    down vote

    favorite
    1












    I'm taking a Nonlinear PDEs course this semester and the last time our professor introduced us to Morrey & Campanato Spaces. We have for $lambda gt 0$ that:




    • The Morrey space $L^{2,lambda}(Omega)$ consists of all functions $fin L^2(Omega)$ for which the seminorm


    $[f]_{L^{2,lambda}}=sup_{x in Omega} sup_{r lt diamOmega} frac{1}{r^lambda} int_{B(x,r)cap Omega} |f|^2 dy lt infty$




    • The Campanato space $mathcal L^{2,lambda}(Omega)$ consists of all functions $fin L^2(Omega)$ for which the seminorm


    $[f]_{mathcal L^{2,lambda}}=sup_{x in Omega} sup_{r lt diamOmega} frac{1}{r^lambda} int_{B(x,r)cap Omega} |f-f_{x,r}|^2 dy lt infty$



    where $f_{x,r}:=frac{1}{mathcal L^n(B(x,r)capOmega)} int_{B(x,r)cap Omega} f dy$ and $Omega subset mathbb R^n$



    The first examples that the professor gave are:




    1. $fin L^{infty} Rightarrow f in L^{2,lambda} ;;forall lambda in (0,n]$

    2. $f in W^{1,infty} Rightarrow f in mathcal L^{2,n+2}$

    3. $f in C^{0,alpha} Rightarrow f in mathcal L^{2,n+2alpha}$


    Although they seem to be quite trivial since there is no special proof of the above nowhere, I have trouble understanding them. I think this double $sup$ in the definition confuses me a lot because I don't know how to handle them. Why do these 3 examples hold?



    I only have some thoughts about 2.:



    If $f in W^{1,infty}(Omega)$ then $f$ is a Lipschitz function. So we write



    $|f(x)-f_{x,r}(x)|=|frac{1}{mathcal L^n(B(x,r)cap Omega)} int_{B(x,r)cap Omega} f(x)-f(y) dy| le frac{1}{mathcal L^n(B(x,r)cap Omega)} int_{B(x,r)cap Omega} |f(x)-f(y)| dy le frac{1}{mathcal L^n(B(x,r)cap Omega)} int_{B(x,r)cap Omega} M|x-y| dy le frac{1}{mathcal L^n(B(x,r)cap Omega)} int_{B(x,r)cap Omega} Mr; dy=Mr$



    Hence $sup_{x in Omega} sup_{r lt diamOmega} frac{1}{r^lambda} int_{B(x,r)cap Omega} |f-f_{x,r}|^2 dy le sup_{x in Omega} sup_{r lt diamOmega} frac{1}{r^lambda} int_{B(x,r)cap Omega} M^2 r^2 dy=sup_{x in Omega} sup_{r lt diamOmega} frac{1}{r^{lambda-2}} M^2 mathcal L^n(B(x,r)cap Omega)$



    At this point I've been stuck. How do I proceed? Could somebody provide me some hints in order to prove the rest too?



    Any help is much appreciated. Thanks in advance!










    share|cite|improve this question


























      up vote
      0
      down vote

      favorite
      1









      up vote
      0
      down vote

      favorite
      1






      1





      I'm taking a Nonlinear PDEs course this semester and the last time our professor introduced us to Morrey & Campanato Spaces. We have for $lambda gt 0$ that:




      • The Morrey space $L^{2,lambda}(Omega)$ consists of all functions $fin L^2(Omega)$ for which the seminorm


      $[f]_{L^{2,lambda}}=sup_{x in Omega} sup_{r lt diamOmega} frac{1}{r^lambda} int_{B(x,r)cap Omega} |f|^2 dy lt infty$




      • The Campanato space $mathcal L^{2,lambda}(Omega)$ consists of all functions $fin L^2(Omega)$ for which the seminorm


      $[f]_{mathcal L^{2,lambda}}=sup_{x in Omega} sup_{r lt diamOmega} frac{1}{r^lambda} int_{B(x,r)cap Omega} |f-f_{x,r}|^2 dy lt infty$



      where $f_{x,r}:=frac{1}{mathcal L^n(B(x,r)capOmega)} int_{B(x,r)cap Omega} f dy$ and $Omega subset mathbb R^n$



      The first examples that the professor gave are:




      1. $fin L^{infty} Rightarrow f in L^{2,lambda} ;;forall lambda in (0,n]$

      2. $f in W^{1,infty} Rightarrow f in mathcal L^{2,n+2}$

      3. $f in C^{0,alpha} Rightarrow f in mathcal L^{2,n+2alpha}$


      Although they seem to be quite trivial since there is no special proof of the above nowhere, I have trouble understanding them. I think this double $sup$ in the definition confuses me a lot because I don't know how to handle them. Why do these 3 examples hold?



      I only have some thoughts about 2.:



      If $f in W^{1,infty}(Omega)$ then $f$ is a Lipschitz function. So we write



      $|f(x)-f_{x,r}(x)|=|frac{1}{mathcal L^n(B(x,r)cap Omega)} int_{B(x,r)cap Omega} f(x)-f(y) dy| le frac{1}{mathcal L^n(B(x,r)cap Omega)} int_{B(x,r)cap Omega} |f(x)-f(y)| dy le frac{1}{mathcal L^n(B(x,r)cap Omega)} int_{B(x,r)cap Omega} M|x-y| dy le frac{1}{mathcal L^n(B(x,r)cap Omega)} int_{B(x,r)cap Omega} Mr; dy=Mr$



      Hence $sup_{x in Omega} sup_{r lt diamOmega} frac{1}{r^lambda} int_{B(x,r)cap Omega} |f-f_{x,r}|^2 dy le sup_{x in Omega} sup_{r lt diamOmega} frac{1}{r^lambda} int_{B(x,r)cap Omega} M^2 r^2 dy=sup_{x in Omega} sup_{r lt diamOmega} frac{1}{r^{lambda-2}} M^2 mathcal L^n(B(x,r)cap Omega)$



      At this point I've been stuck. How do I proceed? Could somebody provide me some hints in order to prove the rest too?



      Any help is much appreciated. Thanks in advance!










      share|cite|improve this question















      I'm taking a Nonlinear PDEs course this semester and the last time our professor introduced us to Morrey & Campanato Spaces. We have for $lambda gt 0$ that:




      • The Morrey space $L^{2,lambda}(Omega)$ consists of all functions $fin L^2(Omega)$ for which the seminorm


      $[f]_{L^{2,lambda}}=sup_{x in Omega} sup_{r lt diamOmega} frac{1}{r^lambda} int_{B(x,r)cap Omega} |f|^2 dy lt infty$




      • The Campanato space $mathcal L^{2,lambda}(Omega)$ consists of all functions $fin L^2(Omega)$ for which the seminorm


      $[f]_{mathcal L^{2,lambda}}=sup_{x in Omega} sup_{r lt diamOmega} frac{1}{r^lambda} int_{B(x,r)cap Omega} |f-f_{x,r}|^2 dy lt infty$



      where $f_{x,r}:=frac{1}{mathcal L^n(B(x,r)capOmega)} int_{B(x,r)cap Omega} f dy$ and $Omega subset mathbb R^n$



      The first examples that the professor gave are:




      1. $fin L^{infty} Rightarrow f in L^{2,lambda} ;;forall lambda in (0,n]$

      2. $f in W^{1,infty} Rightarrow f in mathcal L^{2,n+2}$

      3. $f in C^{0,alpha} Rightarrow f in mathcal L^{2,n+2alpha}$


      Although they seem to be quite trivial since there is no special proof of the above nowhere, I have trouble understanding them. I think this double $sup$ in the definition confuses me a lot because I don't know how to handle them. Why do these 3 examples hold?



      I only have some thoughts about 2.:



      If $f in W^{1,infty}(Omega)$ then $f$ is a Lipschitz function. So we write



      $|f(x)-f_{x,r}(x)|=|frac{1}{mathcal L^n(B(x,r)cap Omega)} int_{B(x,r)cap Omega} f(x)-f(y) dy| le frac{1}{mathcal L^n(B(x,r)cap Omega)} int_{B(x,r)cap Omega} |f(x)-f(y)| dy le frac{1}{mathcal L^n(B(x,r)cap Omega)} int_{B(x,r)cap Omega} M|x-y| dy le frac{1}{mathcal L^n(B(x,r)cap Omega)} int_{B(x,r)cap Omega} Mr; dy=Mr$



      Hence $sup_{x in Omega} sup_{r lt diamOmega} frac{1}{r^lambda} int_{B(x,r)cap Omega} |f-f_{x,r}|^2 dy le sup_{x in Omega} sup_{r lt diamOmega} frac{1}{r^lambda} int_{B(x,r)cap Omega} M^2 r^2 dy=sup_{x in Omega} sup_{r lt diamOmega} frac{1}{r^{lambda-2}} M^2 mathcal L^n(B(x,r)cap Omega)$



      At this point I've been stuck. How do I proceed? Could somebody provide me some hints in order to prove the rest too?



      Any help is much appreciated. Thanks in advance!







      functional-analysis analysis pde sobolev-spaces






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 20 hours ago

























      asked yesterday









      kaithkolesidou

      911411




      911411



























          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














           

          draft saved


          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2994412%2ftrivial-embeddings-in-morrey-campanato-spaces%23new-answer', 'question_page');
          }
          );

          Post as a guest





































          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















           

          draft saved


          draft discarded



















































           


          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2994412%2ftrivial-embeddings-in-morrey-campanato-spaces%23new-answer', 'question_page');
          }
          );

          Post as a guest




















































































          Popular posts from this blog

          How to change which sound is reproduced for terminal bell?

          Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents

          Can I use Tabulator js library in my java Spring + Thymeleaf project?