Affine $mathfrak{su}(2)_k$ characters and Jacobi triple product
up vote
4
down vote
favorite
In this post, the Kac character formula for affine $mathfrak{su}(2)_k$
$$chi_{ell}^{(k)}(tau,z) = frac{Theta_{ell+1,k+2}(tau,z)-Theta_{-ell-1,k+2}(tau,z)}{Theta_{1,2}(tau,z)-Theta_{-1,2}(tau,z)}$$
with
$$Theta_{ell,k}(tau,z)=sum_{nin mathbb{Z}+frac{ell}{2k}} q^{kn^2}y^{kn}, ,qquad (q=e^{2pi itau},,:y=e^{2pi iz})$$
is put in a nice form:
$$chi_{ell}^{(k)}(tau,z)=q^{m_{ell}}frac{sum_{ninmathbb{Z}}frac{sinleft[(ell+1+2n(k+2))pi zright]}{sin(pi z)}q^{n(ell+1)+n^2(k+2)}}{prod_{n>0}(1-q^n)(1-q^n y)(1-q^n y^{-1})}, .$$
I'm running into some trouble getting this expression. I'm guessing the Jacobi triple product identity is used for the denominator, but when I try to compute it I get
begin{align*} Theta_{1,2}(tau,z)-Theta_{-1,2}(tau,z)&=&sum_{ngeqslant 0}q^{2(n+1/4)^2}y^{2(n+1/4)}-sum_{ngeqslant 0}q^{2(n-1/4)^2}y^{2(n-1/4)}\&=& prod_{n>0}(1+q^n y^2)(1+q^n y^{-2})(1-q^{n+2}),.end{align*}
I'm running into the same kind of trouble for the numerator, so I suspect I'm not using the $Theta$ functions right... Some more details on this derivation would be much appreciated, or references where things are done a bit more explicitly!
representation-theory lie-algebras characters
New contributor
add a comment |
up vote
4
down vote
favorite
In this post, the Kac character formula for affine $mathfrak{su}(2)_k$
$$chi_{ell}^{(k)}(tau,z) = frac{Theta_{ell+1,k+2}(tau,z)-Theta_{-ell-1,k+2}(tau,z)}{Theta_{1,2}(tau,z)-Theta_{-1,2}(tau,z)}$$
with
$$Theta_{ell,k}(tau,z)=sum_{nin mathbb{Z}+frac{ell}{2k}} q^{kn^2}y^{kn}, ,qquad (q=e^{2pi itau},,:y=e^{2pi iz})$$
is put in a nice form:
$$chi_{ell}^{(k)}(tau,z)=q^{m_{ell}}frac{sum_{ninmathbb{Z}}frac{sinleft[(ell+1+2n(k+2))pi zright]}{sin(pi z)}q^{n(ell+1)+n^2(k+2)}}{prod_{n>0}(1-q^n)(1-q^n y)(1-q^n y^{-1})}, .$$
I'm running into some trouble getting this expression. I'm guessing the Jacobi triple product identity is used for the denominator, but when I try to compute it I get
begin{align*} Theta_{1,2}(tau,z)-Theta_{-1,2}(tau,z)&=&sum_{ngeqslant 0}q^{2(n+1/4)^2}y^{2(n+1/4)}-sum_{ngeqslant 0}q^{2(n-1/4)^2}y^{2(n-1/4)}\&=& prod_{n>0}(1+q^n y^2)(1+q^n y^{-2})(1-q^{n+2}),.end{align*}
I'm running into the same kind of trouble for the numerator, so I suspect I'm not using the $Theta$ functions right... Some more details on this derivation would be much appreciated, or references where things are done a bit more explicitly!
representation-theory lie-algebras characters
New contributor
add a comment |
up vote
4
down vote
favorite
up vote
4
down vote
favorite
In this post, the Kac character formula for affine $mathfrak{su}(2)_k$
$$chi_{ell}^{(k)}(tau,z) = frac{Theta_{ell+1,k+2}(tau,z)-Theta_{-ell-1,k+2}(tau,z)}{Theta_{1,2}(tau,z)-Theta_{-1,2}(tau,z)}$$
with
$$Theta_{ell,k}(tau,z)=sum_{nin mathbb{Z}+frac{ell}{2k}} q^{kn^2}y^{kn}, ,qquad (q=e^{2pi itau},,:y=e^{2pi iz})$$
is put in a nice form:
$$chi_{ell}^{(k)}(tau,z)=q^{m_{ell}}frac{sum_{ninmathbb{Z}}frac{sinleft[(ell+1+2n(k+2))pi zright]}{sin(pi z)}q^{n(ell+1)+n^2(k+2)}}{prod_{n>0}(1-q^n)(1-q^n y)(1-q^n y^{-1})}, .$$
I'm running into some trouble getting this expression. I'm guessing the Jacobi triple product identity is used for the denominator, but when I try to compute it I get
begin{align*} Theta_{1,2}(tau,z)-Theta_{-1,2}(tau,z)&=&sum_{ngeqslant 0}q^{2(n+1/4)^2}y^{2(n+1/4)}-sum_{ngeqslant 0}q^{2(n-1/4)^2}y^{2(n-1/4)}\&=& prod_{n>0}(1+q^n y^2)(1+q^n y^{-2})(1-q^{n+2}),.end{align*}
I'm running into the same kind of trouble for the numerator, so I suspect I'm not using the $Theta$ functions right... Some more details on this derivation would be much appreciated, or references where things are done a bit more explicitly!
representation-theory lie-algebras characters
New contributor
In this post, the Kac character formula for affine $mathfrak{su}(2)_k$
$$chi_{ell}^{(k)}(tau,z) = frac{Theta_{ell+1,k+2}(tau,z)-Theta_{-ell-1,k+2}(tau,z)}{Theta_{1,2}(tau,z)-Theta_{-1,2}(tau,z)}$$
with
$$Theta_{ell,k}(tau,z)=sum_{nin mathbb{Z}+frac{ell}{2k}} q^{kn^2}y^{kn}, ,qquad (q=e^{2pi itau},,:y=e^{2pi iz})$$
is put in a nice form:
$$chi_{ell}^{(k)}(tau,z)=q^{m_{ell}}frac{sum_{ninmathbb{Z}}frac{sinleft[(ell+1+2n(k+2))pi zright]}{sin(pi z)}q^{n(ell+1)+n^2(k+2)}}{prod_{n>0}(1-q^n)(1-q^n y)(1-q^n y^{-1})}, .$$
I'm running into some trouble getting this expression. I'm guessing the Jacobi triple product identity is used for the denominator, but when I try to compute it I get
begin{align*} Theta_{1,2}(tau,z)-Theta_{-1,2}(tau,z)&=&sum_{ngeqslant 0}q^{2(n+1/4)^2}y^{2(n+1/4)}-sum_{ngeqslant 0}q^{2(n-1/4)^2}y^{2(n-1/4)}\&=& prod_{n>0}(1+q^n y^2)(1+q^n y^{-2})(1-q^{n+2}),.end{align*}
I'm running into the same kind of trouble for the numerator, so I suspect I'm not using the $Theta$ functions right... Some more details on this derivation would be much appreciated, or references where things are done a bit more explicitly!
representation-theory lie-algebras characters
representation-theory lie-algebras characters
New contributor
New contributor
edited Nov 12 at 16:53
New contributor
asked Nov 10 at 17:12
Ella
213
213
New contributor
New contributor
add a comment |
add a comment |
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Ella is a new contributor. Be nice, and check out our Code of Conduct.
Ella is a new contributor. Be nice, and check out our Code of Conduct.
Ella is a new contributor. Be nice, and check out our Code of Conduct.
Ella is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2992850%2faffine-mathfraksu2-k-characters-and-jacobi-triple-product%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown