How is this formula for the Dirichlet $beta$-function derived?
up vote
0
down vote
favorite
According to Wikipedia, we have:
$${displaystyle beta (2k)={frac {1}{2(2k-1)!}}sum _{m=0}^{infty }left(left(sum _{l=0}^{k-1}{binom {2k-1}{2l}}{frac {(-1)^{l}A_{2k-2l-1}}{2l+2m+1}}right)-{frac {(-1)^{k-1}}{2m+2k}}right){frac {A_{2m}}{(2m)!}}{left({frac {pi }{2}}right)}^{2m+2k},}$$
where ${displaystyle A_{k}}$ is the Euler zigzag number.
However, the citation is missing on Wikipedia. Is there an easy way to derive this, or alternatively, a link to a paper with a proof?
reference-request beta-function
add a comment |
up vote
0
down vote
favorite
According to Wikipedia, we have:
$${displaystyle beta (2k)={frac {1}{2(2k-1)!}}sum _{m=0}^{infty }left(left(sum _{l=0}^{k-1}{binom {2k-1}{2l}}{frac {(-1)^{l}A_{2k-2l-1}}{2l+2m+1}}right)-{frac {(-1)^{k-1}}{2m+2k}}right){frac {A_{2m}}{(2m)!}}{left({frac {pi }{2}}right)}^{2m+2k},}$$
where ${displaystyle A_{k}}$ is the Euler zigzag number.
However, the citation is missing on Wikipedia. Is there an easy way to derive this, or alternatively, a link to a paper with a proof?
reference-request beta-function
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
According to Wikipedia, we have:
$${displaystyle beta (2k)={frac {1}{2(2k-1)!}}sum _{m=0}^{infty }left(left(sum _{l=0}^{k-1}{binom {2k-1}{2l}}{frac {(-1)^{l}A_{2k-2l-1}}{2l+2m+1}}right)-{frac {(-1)^{k-1}}{2m+2k}}right){frac {A_{2m}}{(2m)!}}{left({frac {pi }{2}}right)}^{2m+2k},}$$
where ${displaystyle A_{k}}$ is the Euler zigzag number.
However, the citation is missing on Wikipedia. Is there an easy way to derive this, or alternatively, a link to a paper with a proof?
reference-request beta-function
According to Wikipedia, we have:
$${displaystyle beta (2k)={frac {1}{2(2k-1)!}}sum _{m=0}^{infty }left(left(sum _{l=0}^{k-1}{binom {2k-1}{2l}}{frac {(-1)^{l}A_{2k-2l-1}}{2l+2m+1}}right)-{frac {(-1)^{k-1}}{2m+2k}}right){frac {A_{2m}}{(2m)!}}{left({frac {pi }{2}}right)}^{2m+2k},}$$
where ${displaystyle A_{k}}$ is the Euler zigzag number.
However, the citation is missing on Wikipedia. Is there an easy way to derive this, or alternatively, a link to a paper with a proof?
reference-request beta-function
reference-request beta-function
edited 18 hours ago
asked 19 hours ago
Flermat
1,20911129
1,20911129
add a comment |
add a comment |
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2995310%2fhow-is-this-formula-for-the-dirichlet-beta-function-derived%23new-answer', 'question_page');
}
);
Post as a guest
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password