How is this formula for the Dirichlet $beta$-function derived?











up vote
0
down vote

favorite
1












According to Wikipedia, we have:



$${displaystyle beta (2k)={frac {1}{2(2k-1)!}}sum _{m=0}^{infty }left(left(sum _{l=0}^{k-1}{binom {2k-1}{2l}}{frac {(-1)^{l}A_{2k-2l-1}}{2l+2m+1}}right)-{frac {(-1)^{k-1}}{2m+2k}}right){frac {A_{2m}}{(2m)!}}{left({frac {pi }{2}}right)}^{2m+2k},}$$



where ${displaystyle A_{k}}$ is the Euler zigzag number.



However, the citation is missing on Wikipedia. Is there an easy way to derive this, or alternatively, a link to a paper with a proof?










share|cite|improve this question




























    up vote
    0
    down vote

    favorite
    1












    According to Wikipedia, we have:



    $${displaystyle beta (2k)={frac {1}{2(2k-1)!}}sum _{m=0}^{infty }left(left(sum _{l=0}^{k-1}{binom {2k-1}{2l}}{frac {(-1)^{l}A_{2k-2l-1}}{2l+2m+1}}right)-{frac {(-1)^{k-1}}{2m+2k}}right){frac {A_{2m}}{(2m)!}}{left({frac {pi }{2}}right)}^{2m+2k},}$$



    where ${displaystyle A_{k}}$ is the Euler zigzag number.



    However, the citation is missing on Wikipedia. Is there an easy way to derive this, or alternatively, a link to a paper with a proof?










    share|cite|improve this question


























      up vote
      0
      down vote

      favorite
      1









      up vote
      0
      down vote

      favorite
      1






      1





      According to Wikipedia, we have:



      $${displaystyle beta (2k)={frac {1}{2(2k-1)!}}sum _{m=0}^{infty }left(left(sum _{l=0}^{k-1}{binom {2k-1}{2l}}{frac {(-1)^{l}A_{2k-2l-1}}{2l+2m+1}}right)-{frac {(-1)^{k-1}}{2m+2k}}right){frac {A_{2m}}{(2m)!}}{left({frac {pi }{2}}right)}^{2m+2k},}$$



      where ${displaystyle A_{k}}$ is the Euler zigzag number.



      However, the citation is missing on Wikipedia. Is there an easy way to derive this, or alternatively, a link to a paper with a proof?










      share|cite|improve this question















      According to Wikipedia, we have:



      $${displaystyle beta (2k)={frac {1}{2(2k-1)!}}sum _{m=0}^{infty }left(left(sum _{l=0}^{k-1}{binom {2k-1}{2l}}{frac {(-1)^{l}A_{2k-2l-1}}{2l+2m+1}}right)-{frac {(-1)^{k-1}}{2m+2k}}right){frac {A_{2m}}{(2m)!}}{left({frac {pi }{2}}right)}^{2m+2k},}$$



      where ${displaystyle A_{k}}$ is the Euler zigzag number.



      However, the citation is missing on Wikipedia. Is there an easy way to derive this, or alternatively, a link to a paper with a proof?







      reference-request beta-function






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 18 hours ago

























      asked 19 hours ago









      Flermat

      1,20911129




      1,20911129



























          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














           

          draft saved


          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2995310%2fhow-is-this-formula-for-the-dirichlet-beta-function-derived%23new-answer', 'question_page');
          }
          );

          Post as a guest





































          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















           

          draft saved


          draft discarded



















































           


          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2995310%2fhow-is-this-formula-for-the-dirichlet-beta-function-derived%23new-answer', 'question_page');
          }
          );

          Post as a guest




















































































          Popular posts from this blog

          mysqli_query(): Empty query in /home/lucindabrummitt/public_html/blog/wp-includes/wp-db.php on line 1924

          How to change which sound is reproduced for terminal bell?

          Can I use Tabulator js library in my java Spring + Thymeleaf project?