Compare classical and modified algorithm of Cholesky
$begingroup$
Let $textbf{A}$ be a symmetric matrix with tthe modified Cholesky factorization $textbf{A} = textbf{R}^Ttextbf{D}textbf{R}$ and the classical factorization $textbf{A} = textbf{R}_c^Ttextbf{R}_c$
Given $textbf{R}$ and $textbf{D}$, determine $textbf{R}_c$
$textbf{Proof}$:
Let
$$
textbf{D}^{1/2} = begin{bmatrix}
sqrt{d_1} &&& \
&sqrt{d_2}&&\
&&ddots&\
&&&sqrt{d_n}
end{bmatrix}
$$
Then multiply each row in the modified Cholesky matrix textbf{R} by $sqrt{d_{i,i}}$ to obtain the classical Cholesky matrix
$$
textbf{R}_c = textbf{D}^{1/2}textbf{R}
$$
This is confirmed by
begin{align}
textbf{R}_c^Ttextbf{R}_c &= (textbf{D}^{1/2}textbf{R})^T(textbf{D}^{1/2}textbf{R})tag{1}label{eq1} \
&= textbf{R}^Ttextbf{D}^{1/2}textbf{D}^{1/2}textbf{R}tag{2}label{eq2} \&= textbf{R}^Ttextbf{D}textbf{R}tag{3}label{eq3}
end{align}
What is the name of the property of matrix that allow to go from (1) to (2)
linear-algebra diagonalization symmetry transpose
$endgroup$
add a comment |
$begingroup$
Let $textbf{A}$ be a symmetric matrix with tthe modified Cholesky factorization $textbf{A} = textbf{R}^Ttextbf{D}textbf{R}$ and the classical factorization $textbf{A} = textbf{R}_c^Ttextbf{R}_c$
Given $textbf{R}$ and $textbf{D}$, determine $textbf{R}_c$
$textbf{Proof}$:
Let
$$
textbf{D}^{1/2} = begin{bmatrix}
sqrt{d_1} &&& \
&sqrt{d_2}&&\
&&ddots&\
&&&sqrt{d_n}
end{bmatrix}
$$
Then multiply each row in the modified Cholesky matrix textbf{R} by $sqrt{d_{i,i}}$ to obtain the classical Cholesky matrix
$$
textbf{R}_c = textbf{D}^{1/2}textbf{R}
$$
This is confirmed by
begin{align}
textbf{R}_c^Ttextbf{R}_c &= (textbf{D}^{1/2}textbf{R})^T(textbf{D}^{1/2}textbf{R})tag{1}label{eq1} \
&= textbf{R}^Ttextbf{D}^{1/2}textbf{D}^{1/2}textbf{R}tag{2}label{eq2} \&= textbf{R}^Ttextbf{D}textbf{R}tag{3}label{eq3}
end{align}
What is the name of the property of matrix that allow to go from (1) to (2)
linear-algebra diagonalization symmetry transpose
$endgroup$
1
$begingroup$
Distributing a transpose causes order of matrix multiplication to reverse. It's similar to inverse. Also transposing a diagonal matrix does nothing.
$endgroup$
– Mark
Dec 27 '18 at 18:43
add a comment |
$begingroup$
Let $textbf{A}$ be a symmetric matrix with tthe modified Cholesky factorization $textbf{A} = textbf{R}^Ttextbf{D}textbf{R}$ and the classical factorization $textbf{A} = textbf{R}_c^Ttextbf{R}_c$
Given $textbf{R}$ and $textbf{D}$, determine $textbf{R}_c$
$textbf{Proof}$:
Let
$$
textbf{D}^{1/2} = begin{bmatrix}
sqrt{d_1} &&& \
&sqrt{d_2}&&\
&&ddots&\
&&&sqrt{d_n}
end{bmatrix}
$$
Then multiply each row in the modified Cholesky matrix textbf{R} by $sqrt{d_{i,i}}$ to obtain the classical Cholesky matrix
$$
textbf{R}_c = textbf{D}^{1/2}textbf{R}
$$
This is confirmed by
begin{align}
textbf{R}_c^Ttextbf{R}_c &= (textbf{D}^{1/2}textbf{R})^T(textbf{D}^{1/2}textbf{R})tag{1}label{eq1} \
&= textbf{R}^Ttextbf{D}^{1/2}textbf{D}^{1/2}textbf{R}tag{2}label{eq2} \&= textbf{R}^Ttextbf{D}textbf{R}tag{3}label{eq3}
end{align}
What is the name of the property of matrix that allow to go from (1) to (2)
linear-algebra diagonalization symmetry transpose
$endgroup$
Let $textbf{A}$ be a symmetric matrix with tthe modified Cholesky factorization $textbf{A} = textbf{R}^Ttextbf{D}textbf{R}$ and the classical factorization $textbf{A} = textbf{R}_c^Ttextbf{R}_c$
Given $textbf{R}$ and $textbf{D}$, determine $textbf{R}_c$
$textbf{Proof}$:
Let
$$
textbf{D}^{1/2} = begin{bmatrix}
sqrt{d_1} &&& \
&sqrt{d_2}&&\
&&ddots&\
&&&sqrt{d_n}
end{bmatrix}
$$
Then multiply each row in the modified Cholesky matrix textbf{R} by $sqrt{d_{i,i}}$ to obtain the classical Cholesky matrix
$$
textbf{R}_c = textbf{D}^{1/2}textbf{R}
$$
This is confirmed by
begin{align}
textbf{R}_c^Ttextbf{R}_c &= (textbf{D}^{1/2}textbf{R})^T(textbf{D}^{1/2}textbf{R})tag{1}label{eq1} \
&= textbf{R}^Ttextbf{D}^{1/2}textbf{D}^{1/2}textbf{R}tag{2}label{eq2} \&= textbf{R}^Ttextbf{D}textbf{R}tag{3}label{eq3}
end{align}
What is the name of the property of matrix that allow to go from (1) to (2)
linear-algebra diagonalization symmetry transpose
linear-algebra diagonalization symmetry transpose
asked Dec 27 '18 at 18:41
ecjbecjb
28718
28718
1
$begingroup$
Distributing a transpose causes order of matrix multiplication to reverse. It's similar to inverse. Also transposing a diagonal matrix does nothing.
$endgroup$
– Mark
Dec 27 '18 at 18:43
add a comment |
1
$begingroup$
Distributing a transpose causes order of matrix multiplication to reverse. It's similar to inverse. Also transposing a diagonal matrix does nothing.
$endgroup$
– Mark
Dec 27 '18 at 18:43
1
1
$begingroup$
Distributing a transpose causes order of matrix multiplication to reverse. It's similar to inverse. Also transposing a diagonal matrix does nothing.
$endgroup$
– Mark
Dec 27 '18 at 18:43
$begingroup$
Distributing a transpose causes order of matrix multiplication to reverse. It's similar to inverse. Also transposing a diagonal matrix does nothing.
$endgroup$
– Mark
Dec 27 '18 at 18:43
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3054245%2fcompare-classical-and-modified-algorithm-of-cholesky%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3054245%2fcompare-classical-and-modified-algorithm-of-cholesky%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Distributing a transpose causes order of matrix multiplication to reverse. It's similar to inverse. Also transposing a diagonal matrix does nothing.
$endgroup$
– Mark
Dec 27 '18 at 18:43