How to compute the Fourier transform of $e^{-2pi {mid x mid}}$?
up vote
0
down vote
favorite
I want to compute the Fourier transform of $f(x)=e^{-2pi {mid x mid}}$ where $x$ is the vector in $mathbb{R}^n$. I know that the Fourier transform of a radial function is radial but cannot see how to use the fact to calculate the following integrate
begin{equation}
hat{f}(y)=int_{mathbb{R}^n} {e^{-2pi {mid x mid}}} e^{-2pi x cdot y } dx
end{equation}
Could anyone please help me?
analysis fourier-analysis fourier-transform
add a comment |
up vote
0
down vote
favorite
I want to compute the Fourier transform of $f(x)=e^{-2pi {mid x mid}}$ where $x$ is the vector in $mathbb{R}^n$. I know that the Fourier transform of a radial function is radial but cannot see how to use the fact to calculate the following integrate
begin{equation}
hat{f}(y)=int_{mathbb{R}^n} {e^{-2pi {mid x mid}}} e^{-2pi x cdot y } dx
end{equation}
Could anyone please help me?
analysis fourier-analysis fourier-transform
Use polar coordinates.
– uniquesolution
Nov 19 at 22:45
It is general n-dimensional. I cannot see how to use the polar coordinates.
– Keith
Nov 19 at 22:45
You can try writing $x=rphi$ with $rinmathbb R_+$ and $phiin S^{n-1}$.
– Federico
Nov 19 at 23:11
Look up the Hankel Transform and its relation to the Fourier Transform for cases of circular and spherical symmetry.
– Andy Walls
Nov 19 at 23:40
I just had a quick glance at the excellent lecture notes {see.stanford.edu/materials/lsoftaee261/chap8.pdf} but I didn't find an answer to your question.
– Jean Marie
Nov 20 at 0:22
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
I want to compute the Fourier transform of $f(x)=e^{-2pi {mid x mid}}$ where $x$ is the vector in $mathbb{R}^n$. I know that the Fourier transform of a radial function is radial but cannot see how to use the fact to calculate the following integrate
begin{equation}
hat{f}(y)=int_{mathbb{R}^n} {e^{-2pi {mid x mid}}} e^{-2pi x cdot y } dx
end{equation}
Could anyone please help me?
analysis fourier-analysis fourier-transform
I want to compute the Fourier transform of $f(x)=e^{-2pi {mid x mid}}$ where $x$ is the vector in $mathbb{R}^n$. I know that the Fourier transform of a radial function is radial but cannot see how to use the fact to calculate the following integrate
begin{equation}
hat{f}(y)=int_{mathbb{R}^n} {e^{-2pi {mid x mid}}} e^{-2pi x cdot y } dx
end{equation}
Could anyone please help me?
analysis fourier-analysis fourier-transform
analysis fourier-analysis fourier-transform
edited Nov 19 at 23:05
Bernard
117k637109
117k637109
asked Nov 19 at 22:43
Keith
1,403920
1,403920
Use polar coordinates.
– uniquesolution
Nov 19 at 22:45
It is general n-dimensional. I cannot see how to use the polar coordinates.
– Keith
Nov 19 at 22:45
You can try writing $x=rphi$ with $rinmathbb R_+$ and $phiin S^{n-1}$.
– Federico
Nov 19 at 23:11
Look up the Hankel Transform and its relation to the Fourier Transform for cases of circular and spherical symmetry.
– Andy Walls
Nov 19 at 23:40
I just had a quick glance at the excellent lecture notes {see.stanford.edu/materials/lsoftaee261/chap8.pdf} but I didn't find an answer to your question.
– Jean Marie
Nov 20 at 0:22
add a comment |
Use polar coordinates.
– uniquesolution
Nov 19 at 22:45
It is general n-dimensional. I cannot see how to use the polar coordinates.
– Keith
Nov 19 at 22:45
You can try writing $x=rphi$ with $rinmathbb R_+$ and $phiin S^{n-1}$.
– Federico
Nov 19 at 23:11
Look up the Hankel Transform and its relation to the Fourier Transform for cases of circular and spherical symmetry.
– Andy Walls
Nov 19 at 23:40
I just had a quick glance at the excellent lecture notes {see.stanford.edu/materials/lsoftaee261/chap8.pdf} but I didn't find an answer to your question.
– Jean Marie
Nov 20 at 0:22
Use polar coordinates.
– uniquesolution
Nov 19 at 22:45
Use polar coordinates.
– uniquesolution
Nov 19 at 22:45
It is general n-dimensional. I cannot see how to use the polar coordinates.
– Keith
Nov 19 at 22:45
It is general n-dimensional. I cannot see how to use the polar coordinates.
– Keith
Nov 19 at 22:45
You can try writing $x=rphi$ with $rinmathbb R_+$ and $phiin S^{n-1}$.
– Federico
Nov 19 at 23:11
You can try writing $x=rphi$ with $rinmathbb R_+$ and $phiin S^{n-1}$.
– Federico
Nov 19 at 23:11
Look up the Hankel Transform and its relation to the Fourier Transform for cases of circular and spherical symmetry.
– Andy Walls
Nov 19 at 23:40
Look up the Hankel Transform and its relation to the Fourier Transform for cases of circular and spherical symmetry.
– Andy Walls
Nov 19 at 23:40
I just had a quick glance at the excellent lecture notes {see.stanford.edu/materials/lsoftaee261/chap8.pdf} but I didn't find an answer to your question.
– Jean Marie
Nov 20 at 0:22
I just had a quick glance at the excellent lecture notes {see.stanford.edu/materials/lsoftaee261/chap8.pdf} but I didn't find an answer to your question.
– Jean Marie
Nov 20 at 0:22
add a comment |
1 Answer
1
active
oldest
votes
up vote
1
down vote
From Bracewell, the n-dimensional Fourier Transform
$$F(s_1, dots, s_n) = int_{-infty}^{infty} dots int_{-infty}^{infty} f(x_1,dots, x_n) e^{-2pi i (x_1 s_1 + dots + x_n s_n)} space dx_1 dots dx_n $$
when there is n-dimensional symmetry, can be manipulated into
$$F(q) = dfrac{2pi}{q^{frac{1}{2}n-1}} int_{0}^{infty} f(r) J_{frac{1}{2}n-1}(2pi qr)space r^{frac{1}{2}n} space dr$$
Where $r$ and $q$ are the radii from the origin in the original domain and transform domain respectively.
So that the cases of $n=1$ and $n=3$ don't seem so foreign, it is probably worth noting that
$$J_{-frac{1}{2}}(x) = sqrt{dfrac{2}{pi x}}cos(x)$$
$$J_{frac{1}{2}}(x) = sqrt{dfrac{2}{pi x}}sin(x)$$
I'm not quite sure I know what you meant by $|x|$ in your original problem statement, but if you just meant the magnitude of $x$, then the specific transform you wanted to compute looks like
$$F(q) = dfrac{2pi}{q^{frac{1}{2}n-1}} int_{0}^{infty} e^{-2pi r} J_{frac{1}{2}n-1}(2pi qr)space r^{frac{1}{2}n} space dr$$
For $n=1$
$$begin{align*}F(q) &= 2pisqrt{q} int_{0}^{infty} e^{-2pi r} sqrt{dfrac{2}{pi(2pi qr)}}cos(2pi qr)space sqrt{r} space dr\
\
&= 2 int_{0}^{infty} e^{-2pi r} cos(2pi qr)space dr \
\
&=int_{0}^{infty} e^{-2pi r} left(e^{i2pi qr} + e^{-i2pi qr}right)space dr \
\
&= left[dfrac{e^{-2pi r}e^{i2pi qr}}{-2pi (1-iq)} + dfrac{e^{-2pi r}e^{-i2pi qr}}{-2pi (1+iq)}right]Biggr|_0^infty\
\
&= dfrac{1}{2pi}left[dfrac{1}{1-iq}+dfrac{1}{1+iq}right]\
\
&= dfrac{1}{2pi} dfrac{2}{1+q^2}
end{align*}$$
which is exactly what one would expect for the 1 dimensional Fourier Transform.
For $n=2$
$$begin{align*}F(q) &= 2pi int_{0}^{infty} e^{-2pi r} J_{0}(2pi qr)space r space dr\
\
&mbox{(Hankel Transform table lookup)}\
\
&= dfrac{2pi (2pi)}{left[(2pi q)^2 + (2pi)^2right]^{frac{3}{2}}}\
\
&= dfrac{1}{2pi} dfrac{1}{left(1+q^2right)^{frac{3}{2}}}
end{align*}$$
For $n =3$
$$begin{align*}F(q) &= dfrac{2pi}{sqrt{q}} int_{0}^{infty} e^{-2pi r} sqrt{dfrac{2}{pi(2pi qr)}}sin(2pi qr)space r^{frac{3}{2}} space dr \
\
&= dfrac{2}{q} int_{0}^{infty} e^{-2pi r} sin(2pi qr)space r space dr \
\
&mbox{(Wolfram Alpha invocation in lieu of integration by parts)}
\
&= dfrac{1}{(2pi)^2}dfrac{4}{(1+q^2)^2}\
end{align*}$$
And I suppose I'll let you keep on going until you see a pattern in terms of $n$ emerge.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005633%2fhow-to-compute-the-fourier-transform-of-e-2-pi-mid-x-mid%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
From Bracewell, the n-dimensional Fourier Transform
$$F(s_1, dots, s_n) = int_{-infty}^{infty} dots int_{-infty}^{infty} f(x_1,dots, x_n) e^{-2pi i (x_1 s_1 + dots + x_n s_n)} space dx_1 dots dx_n $$
when there is n-dimensional symmetry, can be manipulated into
$$F(q) = dfrac{2pi}{q^{frac{1}{2}n-1}} int_{0}^{infty} f(r) J_{frac{1}{2}n-1}(2pi qr)space r^{frac{1}{2}n} space dr$$
Where $r$ and $q$ are the radii from the origin in the original domain and transform domain respectively.
So that the cases of $n=1$ and $n=3$ don't seem so foreign, it is probably worth noting that
$$J_{-frac{1}{2}}(x) = sqrt{dfrac{2}{pi x}}cos(x)$$
$$J_{frac{1}{2}}(x) = sqrt{dfrac{2}{pi x}}sin(x)$$
I'm not quite sure I know what you meant by $|x|$ in your original problem statement, but if you just meant the magnitude of $x$, then the specific transform you wanted to compute looks like
$$F(q) = dfrac{2pi}{q^{frac{1}{2}n-1}} int_{0}^{infty} e^{-2pi r} J_{frac{1}{2}n-1}(2pi qr)space r^{frac{1}{2}n} space dr$$
For $n=1$
$$begin{align*}F(q) &= 2pisqrt{q} int_{0}^{infty} e^{-2pi r} sqrt{dfrac{2}{pi(2pi qr)}}cos(2pi qr)space sqrt{r} space dr\
\
&= 2 int_{0}^{infty} e^{-2pi r} cos(2pi qr)space dr \
\
&=int_{0}^{infty} e^{-2pi r} left(e^{i2pi qr} + e^{-i2pi qr}right)space dr \
\
&= left[dfrac{e^{-2pi r}e^{i2pi qr}}{-2pi (1-iq)} + dfrac{e^{-2pi r}e^{-i2pi qr}}{-2pi (1+iq)}right]Biggr|_0^infty\
\
&= dfrac{1}{2pi}left[dfrac{1}{1-iq}+dfrac{1}{1+iq}right]\
\
&= dfrac{1}{2pi} dfrac{2}{1+q^2}
end{align*}$$
which is exactly what one would expect for the 1 dimensional Fourier Transform.
For $n=2$
$$begin{align*}F(q) &= 2pi int_{0}^{infty} e^{-2pi r} J_{0}(2pi qr)space r space dr\
\
&mbox{(Hankel Transform table lookup)}\
\
&= dfrac{2pi (2pi)}{left[(2pi q)^2 + (2pi)^2right]^{frac{3}{2}}}\
\
&= dfrac{1}{2pi} dfrac{1}{left(1+q^2right)^{frac{3}{2}}}
end{align*}$$
For $n =3$
$$begin{align*}F(q) &= dfrac{2pi}{sqrt{q}} int_{0}^{infty} e^{-2pi r} sqrt{dfrac{2}{pi(2pi qr)}}sin(2pi qr)space r^{frac{3}{2}} space dr \
\
&= dfrac{2}{q} int_{0}^{infty} e^{-2pi r} sin(2pi qr)space r space dr \
\
&mbox{(Wolfram Alpha invocation in lieu of integration by parts)}
\
&= dfrac{1}{(2pi)^2}dfrac{4}{(1+q^2)^2}\
end{align*}$$
And I suppose I'll let you keep on going until you see a pattern in terms of $n$ emerge.
add a comment |
up vote
1
down vote
From Bracewell, the n-dimensional Fourier Transform
$$F(s_1, dots, s_n) = int_{-infty}^{infty} dots int_{-infty}^{infty} f(x_1,dots, x_n) e^{-2pi i (x_1 s_1 + dots + x_n s_n)} space dx_1 dots dx_n $$
when there is n-dimensional symmetry, can be manipulated into
$$F(q) = dfrac{2pi}{q^{frac{1}{2}n-1}} int_{0}^{infty} f(r) J_{frac{1}{2}n-1}(2pi qr)space r^{frac{1}{2}n} space dr$$
Where $r$ and $q$ are the radii from the origin in the original domain and transform domain respectively.
So that the cases of $n=1$ and $n=3$ don't seem so foreign, it is probably worth noting that
$$J_{-frac{1}{2}}(x) = sqrt{dfrac{2}{pi x}}cos(x)$$
$$J_{frac{1}{2}}(x) = sqrt{dfrac{2}{pi x}}sin(x)$$
I'm not quite sure I know what you meant by $|x|$ in your original problem statement, but if you just meant the magnitude of $x$, then the specific transform you wanted to compute looks like
$$F(q) = dfrac{2pi}{q^{frac{1}{2}n-1}} int_{0}^{infty} e^{-2pi r} J_{frac{1}{2}n-1}(2pi qr)space r^{frac{1}{2}n} space dr$$
For $n=1$
$$begin{align*}F(q) &= 2pisqrt{q} int_{0}^{infty} e^{-2pi r} sqrt{dfrac{2}{pi(2pi qr)}}cos(2pi qr)space sqrt{r} space dr\
\
&= 2 int_{0}^{infty} e^{-2pi r} cos(2pi qr)space dr \
\
&=int_{0}^{infty} e^{-2pi r} left(e^{i2pi qr} + e^{-i2pi qr}right)space dr \
\
&= left[dfrac{e^{-2pi r}e^{i2pi qr}}{-2pi (1-iq)} + dfrac{e^{-2pi r}e^{-i2pi qr}}{-2pi (1+iq)}right]Biggr|_0^infty\
\
&= dfrac{1}{2pi}left[dfrac{1}{1-iq}+dfrac{1}{1+iq}right]\
\
&= dfrac{1}{2pi} dfrac{2}{1+q^2}
end{align*}$$
which is exactly what one would expect for the 1 dimensional Fourier Transform.
For $n=2$
$$begin{align*}F(q) &= 2pi int_{0}^{infty} e^{-2pi r} J_{0}(2pi qr)space r space dr\
\
&mbox{(Hankel Transform table lookup)}\
\
&= dfrac{2pi (2pi)}{left[(2pi q)^2 + (2pi)^2right]^{frac{3}{2}}}\
\
&= dfrac{1}{2pi} dfrac{1}{left(1+q^2right)^{frac{3}{2}}}
end{align*}$$
For $n =3$
$$begin{align*}F(q) &= dfrac{2pi}{sqrt{q}} int_{0}^{infty} e^{-2pi r} sqrt{dfrac{2}{pi(2pi qr)}}sin(2pi qr)space r^{frac{3}{2}} space dr \
\
&= dfrac{2}{q} int_{0}^{infty} e^{-2pi r} sin(2pi qr)space r space dr \
\
&mbox{(Wolfram Alpha invocation in lieu of integration by parts)}
\
&= dfrac{1}{(2pi)^2}dfrac{4}{(1+q^2)^2}\
end{align*}$$
And I suppose I'll let you keep on going until you see a pattern in terms of $n$ emerge.
add a comment |
up vote
1
down vote
up vote
1
down vote
From Bracewell, the n-dimensional Fourier Transform
$$F(s_1, dots, s_n) = int_{-infty}^{infty} dots int_{-infty}^{infty} f(x_1,dots, x_n) e^{-2pi i (x_1 s_1 + dots + x_n s_n)} space dx_1 dots dx_n $$
when there is n-dimensional symmetry, can be manipulated into
$$F(q) = dfrac{2pi}{q^{frac{1}{2}n-1}} int_{0}^{infty} f(r) J_{frac{1}{2}n-1}(2pi qr)space r^{frac{1}{2}n} space dr$$
Where $r$ and $q$ are the radii from the origin in the original domain and transform domain respectively.
So that the cases of $n=1$ and $n=3$ don't seem so foreign, it is probably worth noting that
$$J_{-frac{1}{2}}(x) = sqrt{dfrac{2}{pi x}}cos(x)$$
$$J_{frac{1}{2}}(x) = sqrt{dfrac{2}{pi x}}sin(x)$$
I'm not quite sure I know what you meant by $|x|$ in your original problem statement, but if you just meant the magnitude of $x$, then the specific transform you wanted to compute looks like
$$F(q) = dfrac{2pi}{q^{frac{1}{2}n-1}} int_{0}^{infty} e^{-2pi r} J_{frac{1}{2}n-1}(2pi qr)space r^{frac{1}{2}n} space dr$$
For $n=1$
$$begin{align*}F(q) &= 2pisqrt{q} int_{0}^{infty} e^{-2pi r} sqrt{dfrac{2}{pi(2pi qr)}}cos(2pi qr)space sqrt{r} space dr\
\
&= 2 int_{0}^{infty} e^{-2pi r} cos(2pi qr)space dr \
\
&=int_{0}^{infty} e^{-2pi r} left(e^{i2pi qr} + e^{-i2pi qr}right)space dr \
\
&= left[dfrac{e^{-2pi r}e^{i2pi qr}}{-2pi (1-iq)} + dfrac{e^{-2pi r}e^{-i2pi qr}}{-2pi (1+iq)}right]Biggr|_0^infty\
\
&= dfrac{1}{2pi}left[dfrac{1}{1-iq}+dfrac{1}{1+iq}right]\
\
&= dfrac{1}{2pi} dfrac{2}{1+q^2}
end{align*}$$
which is exactly what one would expect for the 1 dimensional Fourier Transform.
For $n=2$
$$begin{align*}F(q) &= 2pi int_{0}^{infty} e^{-2pi r} J_{0}(2pi qr)space r space dr\
\
&mbox{(Hankel Transform table lookup)}\
\
&= dfrac{2pi (2pi)}{left[(2pi q)^2 + (2pi)^2right]^{frac{3}{2}}}\
\
&= dfrac{1}{2pi} dfrac{1}{left(1+q^2right)^{frac{3}{2}}}
end{align*}$$
For $n =3$
$$begin{align*}F(q) &= dfrac{2pi}{sqrt{q}} int_{0}^{infty} e^{-2pi r} sqrt{dfrac{2}{pi(2pi qr)}}sin(2pi qr)space r^{frac{3}{2}} space dr \
\
&= dfrac{2}{q} int_{0}^{infty} e^{-2pi r} sin(2pi qr)space r space dr \
\
&mbox{(Wolfram Alpha invocation in lieu of integration by parts)}
\
&= dfrac{1}{(2pi)^2}dfrac{4}{(1+q^2)^2}\
end{align*}$$
And I suppose I'll let you keep on going until you see a pattern in terms of $n$ emerge.
From Bracewell, the n-dimensional Fourier Transform
$$F(s_1, dots, s_n) = int_{-infty}^{infty} dots int_{-infty}^{infty} f(x_1,dots, x_n) e^{-2pi i (x_1 s_1 + dots + x_n s_n)} space dx_1 dots dx_n $$
when there is n-dimensional symmetry, can be manipulated into
$$F(q) = dfrac{2pi}{q^{frac{1}{2}n-1}} int_{0}^{infty} f(r) J_{frac{1}{2}n-1}(2pi qr)space r^{frac{1}{2}n} space dr$$
Where $r$ and $q$ are the radii from the origin in the original domain and transform domain respectively.
So that the cases of $n=1$ and $n=3$ don't seem so foreign, it is probably worth noting that
$$J_{-frac{1}{2}}(x) = sqrt{dfrac{2}{pi x}}cos(x)$$
$$J_{frac{1}{2}}(x) = sqrt{dfrac{2}{pi x}}sin(x)$$
I'm not quite sure I know what you meant by $|x|$ in your original problem statement, but if you just meant the magnitude of $x$, then the specific transform you wanted to compute looks like
$$F(q) = dfrac{2pi}{q^{frac{1}{2}n-1}} int_{0}^{infty} e^{-2pi r} J_{frac{1}{2}n-1}(2pi qr)space r^{frac{1}{2}n} space dr$$
For $n=1$
$$begin{align*}F(q) &= 2pisqrt{q} int_{0}^{infty} e^{-2pi r} sqrt{dfrac{2}{pi(2pi qr)}}cos(2pi qr)space sqrt{r} space dr\
\
&= 2 int_{0}^{infty} e^{-2pi r} cos(2pi qr)space dr \
\
&=int_{0}^{infty} e^{-2pi r} left(e^{i2pi qr} + e^{-i2pi qr}right)space dr \
\
&= left[dfrac{e^{-2pi r}e^{i2pi qr}}{-2pi (1-iq)} + dfrac{e^{-2pi r}e^{-i2pi qr}}{-2pi (1+iq)}right]Biggr|_0^infty\
\
&= dfrac{1}{2pi}left[dfrac{1}{1-iq}+dfrac{1}{1+iq}right]\
\
&= dfrac{1}{2pi} dfrac{2}{1+q^2}
end{align*}$$
which is exactly what one would expect for the 1 dimensional Fourier Transform.
For $n=2$
$$begin{align*}F(q) &= 2pi int_{0}^{infty} e^{-2pi r} J_{0}(2pi qr)space r space dr\
\
&mbox{(Hankel Transform table lookup)}\
\
&= dfrac{2pi (2pi)}{left[(2pi q)^2 + (2pi)^2right]^{frac{3}{2}}}\
\
&= dfrac{1}{2pi} dfrac{1}{left(1+q^2right)^{frac{3}{2}}}
end{align*}$$
For $n =3$
$$begin{align*}F(q) &= dfrac{2pi}{sqrt{q}} int_{0}^{infty} e^{-2pi r} sqrt{dfrac{2}{pi(2pi qr)}}sin(2pi qr)space r^{frac{3}{2}} space dr \
\
&= dfrac{2}{q} int_{0}^{infty} e^{-2pi r} sin(2pi qr)space r space dr \
\
&mbox{(Wolfram Alpha invocation in lieu of integration by parts)}
\
&= dfrac{1}{(2pi)^2}dfrac{4}{(1+q^2)^2}\
end{align*}$$
And I suppose I'll let you keep on going until you see a pattern in terms of $n$ emerge.
answered Nov 21 at 0:05
Andy Walls
1,469127
1,469127
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005633%2fhow-to-compute-the-fourier-transform-of-e-2-pi-mid-x-mid%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Use polar coordinates.
– uniquesolution
Nov 19 at 22:45
It is general n-dimensional. I cannot see how to use the polar coordinates.
– Keith
Nov 19 at 22:45
You can try writing $x=rphi$ with $rinmathbb R_+$ and $phiin S^{n-1}$.
– Federico
Nov 19 at 23:11
Look up the Hankel Transform and its relation to the Fourier Transform for cases of circular and spherical symmetry.
– Andy Walls
Nov 19 at 23:40
I just had a quick glance at the excellent lecture notes {see.stanford.edu/materials/lsoftaee261/chap8.pdf} but I didn't find an answer to your question.
– Jean Marie
Nov 20 at 0:22