Finding the Dual of an LP, where variables are not well isolated.
up vote
0
down vote
favorite
Could someone guide me through how I could go about finding the dual of the following LP. Let $A subset Bbb R^{m x n}$, and $x = (x_1, ..., x_m)$.
$$text{max } z
\
text{st } z le x^TA_{.j} , forall j in {1, ldots, m}
\
x_1 + ldots + x_m = 1
\
x ge vec{0}
$$
, where $A_{.j}$ represents the j'th column of A.
My confusion is coming from the fact that in this case, $A$ is a constant matrix, but all the $x_i$'s are variables; as is z.
So I can't see how I can apply the standard primal-dual conversion.
Thanks!
optimization linear-programming duality-theorems
add a comment |
up vote
0
down vote
favorite
Could someone guide me through how I could go about finding the dual of the following LP. Let $A subset Bbb R^{m x n}$, and $x = (x_1, ..., x_m)$.
$$text{max } z
\
text{st } z le x^TA_{.j} , forall j in {1, ldots, m}
\
x_1 + ldots + x_m = 1
\
x ge vec{0}
$$
, where $A_{.j}$ represents the j'th column of A.
My confusion is coming from the fact that in this case, $A$ is a constant matrix, but all the $x_i$'s are variables; as is z.
So I can't see how I can apply the standard primal-dual conversion.
Thanks!
optimization linear-programming duality-theorems
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Could someone guide me through how I could go about finding the dual of the following LP. Let $A subset Bbb R^{m x n}$, and $x = (x_1, ..., x_m)$.
$$text{max } z
\
text{st } z le x^TA_{.j} , forall j in {1, ldots, m}
\
x_1 + ldots + x_m = 1
\
x ge vec{0}
$$
, where $A_{.j}$ represents the j'th column of A.
My confusion is coming from the fact that in this case, $A$ is a constant matrix, but all the $x_i$'s are variables; as is z.
So I can't see how I can apply the standard primal-dual conversion.
Thanks!
optimization linear-programming duality-theorems
Could someone guide me through how I could go about finding the dual of the following LP. Let $A subset Bbb R^{m x n}$, and $x = (x_1, ..., x_m)$.
$$text{max } z
\
text{st } z le x^TA_{.j} , forall j in {1, ldots, m}
\
x_1 + ldots + x_m = 1
\
x ge vec{0}
$$
, where $A_{.j}$ represents the j'th column of A.
My confusion is coming from the fact that in this case, $A$ is a constant matrix, but all the $x_i$'s are variables; as is z.
So I can't see how I can apply the standard primal-dual conversion.
Thanks!
optimization linear-programming duality-theorems
optimization linear-programming duality-theorems
asked Nov 19 at 22:52
Bojack Horseman
1117
1117
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
up vote
1
down vote
accepted
You could define $x'=begin{pmatrix}x \ zend{pmatrix}$, then the problem is:
$$begin{align}
max quad & begin{pmatrix}0 \ 0 \ vdots \ 0 \ 1end{pmatrix}^T x' \
text{s.t.} quad & begin{pmatrix} A^T & -e \ e^T & 0 \ -e^T & 0end{pmatrix}x' leq begin{pmatrix} 0 \ 0 \ vdots \ 0 \ 1 \ -1end{pmatrix} \
& x' geq 0.
end{align}$$
Deriving the dual is now simple.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005642%2ffinding-the-dual-of-an-lp-where-variables-are-not-well-isolated%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
You could define $x'=begin{pmatrix}x \ zend{pmatrix}$, then the problem is:
$$begin{align}
max quad & begin{pmatrix}0 \ 0 \ vdots \ 0 \ 1end{pmatrix}^T x' \
text{s.t.} quad & begin{pmatrix} A^T & -e \ e^T & 0 \ -e^T & 0end{pmatrix}x' leq begin{pmatrix} 0 \ 0 \ vdots \ 0 \ 1 \ -1end{pmatrix} \
& x' geq 0.
end{align}$$
Deriving the dual is now simple.
add a comment |
up vote
1
down vote
accepted
You could define $x'=begin{pmatrix}x \ zend{pmatrix}$, then the problem is:
$$begin{align}
max quad & begin{pmatrix}0 \ 0 \ vdots \ 0 \ 1end{pmatrix}^T x' \
text{s.t.} quad & begin{pmatrix} A^T & -e \ e^T & 0 \ -e^T & 0end{pmatrix}x' leq begin{pmatrix} 0 \ 0 \ vdots \ 0 \ 1 \ -1end{pmatrix} \
& x' geq 0.
end{align}$$
Deriving the dual is now simple.
add a comment |
up vote
1
down vote
accepted
up vote
1
down vote
accepted
You could define $x'=begin{pmatrix}x \ zend{pmatrix}$, then the problem is:
$$begin{align}
max quad & begin{pmatrix}0 \ 0 \ vdots \ 0 \ 1end{pmatrix}^T x' \
text{s.t.} quad & begin{pmatrix} A^T & -e \ e^T & 0 \ -e^T & 0end{pmatrix}x' leq begin{pmatrix} 0 \ 0 \ vdots \ 0 \ 1 \ -1end{pmatrix} \
& x' geq 0.
end{align}$$
Deriving the dual is now simple.
You could define $x'=begin{pmatrix}x \ zend{pmatrix}$, then the problem is:
$$begin{align}
max quad & begin{pmatrix}0 \ 0 \ vdots \ 0 \ 1end{pmatrix}^T x' \
text{s.t.} quad & begin{pmatrix} A^T & -e \ e^T & 0 \ -e^T & 0end{pmatrix}x' leq begin{pmatrix} 0 \ 0 \ vdots \ 0 \ 1 \ -1end{pmatrix} \
& x' geq 0.
end{align}$$
Deriving the dual is now simple.
answered Nov 20 at 0:36
LinAlg
7,9241520
7,9241520
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005642%2ffinding-the-dual-of-an-lp-where-variables-are-not-well-isolated%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown