How can I measure the vibrations of a solid object?











up vote
2
down vote

favorite












I want to measure the vibrations of a solid object (a tuning fork, a bone conducting headphone, the chest during singing) and to isolate them from the vibrations of the air. So I am looking for a meter that will pick those vibrations only when it's in contact when the vibrating object (hence a meter that just reads frequency probably won't work for me)



I've tried to use a smartphone's accelerometer but it didn't pick anything. I've also to use a phone's sound meter in order to see whether it's picks more sound when in contact with such object but the reading was the same.










share|improve this question
























  • What is the sensitivity of a smartphone’s sensor compared to what you want to measure? It won’t read or record anything outside if what its working range is...
    – Solar Mike
    Nov 28 at 16:02










  • I guess the frequency and dB ranges of a regular phone are enough. But maybe something else is needed.
    – OMGsh
    Nov 28 at 16:13






  • 1




    Don’t guess, find out for sure...
    – Solar Mike
    Nov 28 at 16:35










  • iPhone 4 range: ±2g, precision 0.018g
    – OMGsh
    Nov 28 at 17:54










  • A good start, so now what is the range that you need to detect?
    – Solar Mike
    Nov 28 at 17:58















up vote
2
down vote

favorite












I want to measure the vibrations of a solid object (a tuning fork, a bone conducting headphone, the chest during singing) and to isolate them from the vibrations of the air. So I am looking for a meter that will pick those vibrations only when it's in contact when the vibrating object (hence a meter that just reads frequency probably won't work for me)



I've tried to use a smartphone's accelerometer but it didn't pick anything. I've also to use a phone's sound meter in order to see whether it's picks more sound when in contact with such object but the reading was the same.










share|improve this question
























  • What is the sensitivity of a smartphone’s sensor compared to what you want to measure? It won’t read or record anything outside if what its working range is...
    – Solar Mike
    Nov 28 at 16:02










  • I guess the frequency and dB ranges of a regular phone are enough. But maybe something else is needed.
    – OMGsh
    Nov 28 at 16:13






  • 1




    Don’t guess, find out for sure...
    – Solar Mike
    Nov 28 at 16:35










  • iPhone 4 range: ±2g, precision 0.018g
    – OMGsh
    Nov 28 at 17:54










  • A good start, so now what is the range that you need to detect?
    – Solar Mike
    Nov 28 at 17:58













up vote
2
down vote

favorite









up vote
2
down vote

favorite











I want to measure the vibrations of a solid object (a tuning fork, a bone conducting headphone, the chest during singing) and to isolate them from the vibrations of the air. So I am looking for a meter that will pick those vibrations only when it's in contact when the vibrating object (hence a meter that just reads frequency probably won't work for me)



I've tried to use a smartphone's accelerometer but it didn't pick anything. I've also to use a phone's sound meter in order to see whether it's picks more sound when in contact with such object but the reading was the same.










share|improve this question















I want to measure the vibrations of a solid object (a tuning fork, a bone conducting headphone, the chest during singing) and to isolate them from the vibrations of the air. So I am looking for a meter that will pick those vibrations only when it's in contact when the vibrating object (hence a meter that just reads frequency probably won't work for me)



I've tried to use a smartphone's accelerometer but it didn't pick anything. I've also to use a phone's sound meter in order to see whether it's picks more sound when in contact with such object but the reading was the same.







vibration






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Nov 28 at 16:11

























asked Nov 28 at 15:52









OMGsh

206




206












  • What is the sensitivity of a smartphone’s sensor compared to what you want to measure? It won’t read or record anything outside if what its working range is...
    – Solar Mike
    Nov 28 at 16:02










  • I guess the frequency and dB ranges of a regular phone are enough. But maybe something else is needed.
    – OMGsh
    Nov 28 at 16:13






  • 1




    Don’t guess, find out for sure...
    – Solar Mike
    Nov 28 at 16:35










  • iPhone 4 range: ±2g, precision 0.018g
    – OMGsh
    Nov 28 at 17:54










  • A good start, so now what is the range that you need to detect?
    – Solar Mike
    Nov 28 at 17:58


















  • What is the sensitivity of a smartphone’s sensor compared to what you want to measure? It won’t read or record anything outside if what its working range is...
    – Solar Mike
    Nov 28 at 16:02










  • I guess the frequency and dB ranges of a regular phone are enough. But maybe something else is needed.
    – OMGsh
    Nov 28 at 16:13






  • 1




    Don’t guess, find out for sure...
    – Solar Mike
    Nov 28 at 16:35










  • iPhone 4 range: ±2g, precision 0.018g
    – OMGsh
    Nov 28 at 17:54










  • A good start, so now what is the range that you need to detect?
    – Solar Mike
    Nov 28 at 17:58
















What is the sensitivity of a smartphone’s sensor compared to what you want to measure? It won’t read or record anything outside if what its working range is...
– Solar Mike
Nov 28 at 16:02




What is the sensitivity of a smartphone’s sensor compared to what you want to measure? It won’t read or record anything outside if what its working range is...
– Solar Mike
Nov 28 at 16:02












I guess the frequency and dB ranges of a regular phone are enough. But maybe something else is needed.
– OMGsh
Nov 28 at 16:13




I guess the frequency and dB ranges of a regular phone are enough. But maybe something else is needed.
– OMGsh
Nov 28 at 16:13




1




1




Don’t guess, find out for sure...
– Solar Mike
Nov 28 at 16:35




Don’t guess, find out for sure...
– Solar Mike
Nov 28 at 16:35












iPhone 4 range: ±2g, precision 0.018g
– OMGsh
Nov 28 at 17:54




iPhone 4 range: ±2g, precision 0.018g
– OMGsh
Nov 28 at 17:54












A good start, so now what is the range that you need to detect?
– Solar Mike
Nov 28 at 17:58




A good start, so now what is the range that you need to detect?
– Solar Mike
Nov 28 at 17:58










2 Answers
2






active

oldest

votes

















up vote
4
down vote



accepted










An accelerometer is the correct choice, but the smartphone accelerometer gets its readouts smoothed out in software before being made accessible to userspace. It won't pick up such fine vibrations. You'll need a microcontroller (for up to ~1khz frequencies) or a DSP (higher), preferably on a development board, to perform the sampling. (note you should have the sample rate at least a few times higher than the frequency you measure).



Another option is a strain gauge. This again should be read by a microcontroller/DSP, or an oscilloscope (may need some basic circuitry to provide power), although it may not perform so well on soft surfaces, like human chest.






share|improve this answer





















  • Thanks a lot! So can I use for example an Arduino with a simple accelerometer? What is the accelerometer sensitivity needed for frequencies around e.g. 400Hz ? ( a simple sensor has a range of +-3g to +-16g)
    – OMGsh
    Nov 28 at 17:51










  • @OMGsh It depends on the amplitude of vibration. At 400 Hz, an amplitude of 1mm peak to peak would have a maximum acceleration of about 320g. It scales linearly so 0.01mm displacement would be about 3.2g. Of course measuring such small amplitudes is just as hard as measuring the acceleration, if you don't have any special tools to do it!
    – alephzero
    Nov 28 at 20:14












  • How did you get 320g? Isn't it accelerating from -800mm/s to +800mm/s in 1/800s, so ~120g? As for the amplitude I guess it depends on the object and volume. However can it be estimated theoretically, say for a guitar's resonator?
    – OMGsh
    Nov 28 at 20:36












  • Since you're measuring frequency, not the exact waveform, you don't need sensors of some huge acceleration ranges - they will simply saturate at accelerations exceeding their range, producing +max/-max signal yielding a square waveform instead of sine, but the frequency will match. Arduino has clock frequency of order of 16MHz and the program is low-level without OS overhead, which means it should be able to handle even 10-100kHz measurements.
    – SF.
    Nov 28 at 22:42


















up vote
3
down vote













You might want to look at contact pickups designed for acoustic musical instruments.



Try searching for contact microphones of contact transducers. These tend to be based on piezo electric devices and sense vibrations through direct contact as opposed to acoustic microphones whcih generally use some sort of diaphragm.



Edit



The instrument pickups area available as a complete package with an analogue audio output, usually via a 1/4" jack socket. Most PCs have an audio input although you should check that the impedance of the pickup matches that of the PCs input. You can also get various balancing devices to facilitate this although it may not be essential.



As mentioned in the comments instrument pickups are designed for an audible frequency range which 200Hz is well within albeit at the low end but individual device specs should tell you their response range.



You can also get the sensors individually but you will at least need to fit an output connector and possibly also a pre-amp or passive filter.






share|improve this answer























  • What are the specifications needed for capturing around 200Hz frequencies and can I get the readings, say on a PC?
    – OMGsh
    Nov 28 at 18:05










  • The transducers mentioned by Chris will pick up any audio frequency, then you need to plug the transducer into the sound card on your computer and use any audio recording ( or sound analyzing ) software to display the signals on your computer screen. There are many websites that can show you how to do this. Let Google be your guide !
    – William Hird
    Nov 29 at 3:18











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "595"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fengineering.stackexchange.com%2fquestions%2f24904%2fhow-can-i-measure-the-vibrations-of-a-solid-object%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes








up vote
4
down vote



accepted










An accelerometer is the correct choice, but the smartphone accelerometer gets its readouts smoothed out in software before being made accessible to userspace. It won't pick up such fine vibrations. You'll need a microcontroller (for up to ~1khz frequencies) or a DSP (higher), preferably on a development board, to perform the sampling. (note you should have the sample rate at least a few times higher than the frequency you measure).



Another option is a strain gauge. This again should be read by a microcontroller/DSP, or an oscilloscope (may need some basic circuitry to provide power), although it may not perform so well on soft surfaces, like human chest.






share|improve this answer





















  • Thanks a lot! So can I use for example an Arduino with a simple accelerometer? What is the accelerometer sensitivity needed for frequencies around e.g. 400Hz ? ( a simple sensor has a range of +-3g to +-16g)
    – OMGsh
    Nov 28 at 17:51










  • @OMGsh It depends on the amplitude of vibration. At 400 Hz, an amplitude of 1mm peak to peak would have a maximum acceleration of about 320g. It scales linearly so 0.01mm displacement would be about 3.2g. Of course measuring such small amplitudes is just as hard as measuring the acceleration, if you don't have any special tools to do it!
    – alephzero
    Nov 28 at 20:14












  • How did you get 320g? Isn't it accelerating from -800mm/s to +800mm/s in 1/800s, so ~120g? As for the amplitude I guess it depends on the object and volume. However can it be estimated theoretically, say for a guitar's resonator?
    – OMGsh
    Nov 28 at 20:36












  • Since you're measuring frequency, not the exact waveform, you don't need sensors of some huge acceleration ranges - they will simply saturate at accelerations exceeding their range, producing +max/-max signal yielding a square waveform instead of sine, but the frequency will match. Arduino has clock frequency of order of 16MHz and the program is low-level without OS overhead, which means it should be able to handle even 10-100kHz measurements.
    – SF.
    Nov 28 at 22:42















up vote
4
down vote



accepted










An accelerometer is the correct choice, but the smartphone accelerometer gets its readouts smoothed out in software before being made accessible to userspace. It won't pick up such fine vibrations. You'll need a microcontroller (for up to ~1khz frequencies) or a DSP (higher), preferably on a development board, to perform the sampling. (note you should have the sample rate at least a few times higher than the frequency you measure).



Another option is a strain gauge. This again should be read by a microcontroller/DSP, or an oscilloscope (may need some basic circuitry to provide power), although it may not perform so well on soft surfaces, like human chest.






share|improve this answer





















  • Thanks a lot! So can I use for example an Arduino with a simple accelerometer? What is the accelerometer sensitivity needed for frequencies around e.g. 400Hz ? ( a simple sensor has a range of +-3g to +-16g)
    – OMGsh
    Nov 28 at 17:51










  • @OMGsh It depends on the amplitude of vibration. At 400 Hz, an amplitude of 1mm peak to peak would have a maximum acceleration of about 320g. It scales linearly so 0.01mm displacement would be about 3.2g. Of course measuring such small amplitudes is just as hard as measuring the acceleration, if you don't have any special tools to do it!
    – alephzero
    Nov 28 at 20:14












  • How did you get 320g? Isn't it accelerating from -800mm/s to +800mm/s in 1/800s, so ~120g? As for the amplitude I guess it depends on the object and volume. However can it be estimated theoretically, say for a guitar's resonator?
    – OMGsh
    Nov 28 at 20:36












  • Since you're measuring frequency, not the exact waveform, you don't need sensors of some huge acceleration ranges - they will simply saturate at accelerations exceeding their range, producing +max/-max signal yielding a square waveform instead of sine, but the frequency will match. Arduino has clock frequency of order of 16MHz and the program is low-level without OS overhead, which means it should be able to handle even 10-100kHz measurements.
    – SF.
    Nov 28 at 22:42













up vote
4
down vote



accepted







up vote
4
down vote



accepted






An accelerometer is the correct choice, but the smartphone accelerometer gets its readouts smoothed out in software before being made accessible to userspace. It won't pick up such fine vibrations. You'll need a microcontroller (for up to ~1khz frequencies) or a DSP (higher), preferably on a development board, to perform the sampling. (note you should have the sample rate at least a few times higher than the frequency you measure).



Another option is a strain gauge. This again should be read by a microcontroller/DSP, or an oscilloscope (may need some basic circuitry to provide power), although it may not perform so well on soft surfaces, like human chest.






share|improve this answer












An accelerometer is the correct choice, but the smartphone accelerometer gets its readouts smoothed out in software before being made accessible to userspace. It won't pick up such fine vibrations. You'll need a microcontroller (for up to ~1khz frequencies) or a DSP (higher), preferably on a development board, to perform the sampling. (note you should have the sample rate at least a few times higher than the frequency you measure).



Another option is a strain gauge. This again should be read by a microcontroller/DSP, or an oscilloscope (may need some basic circuitry to provide power), although it may not perform so well on soft surfaces, like human chest.







share|improve this answer












share|improve this answer



share|improve this answer










answered Nov 28 at 16:33









SF.

4,4651239




4,4651239












  • Thanks a lot! So can I use for example an Arduino with a simple accelerometer? What is the accelerometer sensitivity needed for frequencies around e.g. 400Hz ? ( a simple sensor has a range of +-3g to +-16g)
    – OMGsh
    Nov 28 at 17:51










  • @OMGsh It depends on the amplitude of vibration. At 400 Hz, an amplitude of 1mm peak to peak would have a maximum acceleration of about 320g. It scales linearly so 0.01mm displacement would be about 3.2g. Of course measuring such small amplitudes is just as hard as measuring the acceleration, if you don't have any special tools to do it!
    – alephzero
    Nov 28 at 20:14












  • How did you get 320g? Isn't it accelerating from -800mm/s to +800mm/s in 1/800s, so ~120g? As for the amplitude I guess it depends on the object and volume. However can it be estimated theoretically, say for a guitar's resonator?
    – OMGsh
    Nov 28 at 20:36












  • Since you're measuring frequency, not the exact waveform, you don't need sensors of some huge acceleration ranges - they will simply saturate at accelerations exceeding their range, producing +max/-max signal yielding a square waveform instead of sine, but the frequency will match. Arduino has clock frequency of order of 16MHz and the program is low-level without OS overhead, which means it should be able to handle even 10-100kHz measurements.
    – SF.
    Nov 28 at 22:42


















  • Thanks a lot! So can I use for example an Arduino with a simple accelerometer? What is the accelerometer sensitivity needed for frequencies around e.g. 400Hz ? ( a simple sensor has a range of +-3g to +-16g)
    – OMGsh
    Nov 28 at 17:51










  • @OMGsh It depends on the amplitude of vibration. At 400 Hz, an amplitude of 1mm peak to peak would have a maximum acceleration of about 320g. It scales linearly so 0.01mm displacement would be about 3.2g. Of course measuring such small amplitudes is just as hard as measuring the acceleration, if you don't have any special tools to do it!
    – alephzero
    Nov 28 at 20:14












  • How did you get 320g? Isn't it accelerating from -800mm/s to +800mm/s in 1/800s, so ~120g? As for the amplitude I guess it depends on the object and volume. However can it be estimated theoretically, say for a guitar's resonator?
    – OMGsh
    Nov 28 at 20:36












  • Since you're measuring frequency, not the exact waveform, you don't need sensors of some huge acceleration ranges - they will simply saturate at accelerations exceeding their range, producing +max/-max signal yielding a square waveform instead of sine, but the frequency will match. Arduino has clock frequency of order of 16MHz and the program is low-level without OS overhead, which means it should be able to handle even 10-100kHz measurements.
    – SF.
    Nov 28 at 22:42
















Thanks a lot! So can I use for example an Arduino with a simple accelerometer? What is the accelerometer sensitivity needed for frequencies around e.g. 400Hz ? ( a simple sensor has a range of +-3g to +-16g)
– OMGsh
Nov 28 at 17:51




Thanks a lot! So can I use for example an Arduino with a simple accelerometer? What is the accelerometer sensitivity needed for frequencies around e.g. 400Hz ? ( a simple sensor has a range of +-3g to +-16g)
– OMGsh
Nov 28 at 17:51












@OMGsh It depends on the amplitude of vibration. At 400 Hz, an amplitude of 1mm peak to peak would have a maximum acceleration of about 320g. It scales linearly so 0.01mm displacement would be about 3.2g. Of course measuring such small amplitudes is just as hard as measuring the acceleration, if you don't have any special tools to do it!
– alephzero
Nov 28 at 20:14






@OMGsh It depends on the amplitude of vibration. At 400 Hz, an amplitude of 1mm peak to peak would have a maximum acceleration of about 320g. It scales linearly so 0.01mm displacement would be about 3.2g. Of course measuring such small amplitudes is just as hard as measuring the acceleration, if you don't have any special tools to do it!
– alephzero
Nov 28 at 20:14














How did you get 320g? Isn't it accelerating from -800mm/s to +800mm/s in 1/800s, so ~120g? As for the amplitude I guess it depends on the object and volume. However can it be estimated theoretically, say for a guitar's resonator?
– OMGsh
Nov 28 at 20:36






How did you get 320g? Isn't it accelerating from -800mm/s to +800mm/s in 1/800s, so ~120g? As for the amplitude I guess it depends on the object and volume. However can it be estimated theoretically, say for a guitar's resonator?
– OMGsh
Nov 28 at 20:36














Since you're measuring frequency, not the exact waveform, you don't need sensors of some huge acceleration ranges - they will simply saturate at accelerations exceeding their range, producing +max/-max signal yielding a square waveform instead of sine, but the frequency will match. Arduino has clock frequency of order of 16MHz and the program is low-level without OS overhead, which means it should be able to handle even 10-100kHz measurements.
– SF.
Nov 28 at 22:42




Since you're measuring frequency, not the exact waveform, you don't need sensors of some huge acceleration ranges - they will simply saturate at accelerations exceeding their range, producing +max/-max signal yielding a square waveform instead of sine, but the frequency will match. Arduino has clock frequency of order of 16MHz and the program is low-level without OS overhead, which means it should be able to handle even 10-100kHz measurements.
– SF.
Nov 28 at 22:42










up vote
3
down vote













You might want to look at contact pickups designed for acoustic musical instruments.



Try searching for contact microphones of contact transducers. These tend to be based on piezo electric devices and sense vibrations through direct contact as opposed to acoustic microphones whcih generally use some sort of diaphragm.



Edit



The instrument pickups area available as a complete package with an analogue audio output, usually via a 1/4" jack socket. Most PCs have an audio input although you should check that the impedance of the pickup matches that of the PCs input. You can also get various balancing devices to facilitate this although it may not be essential.



As mentioned in the comments instrument pickups are designed for an audible frequency range which 200Hz is well within albeit at the low end but individual device specs should tell you their response range.



You can also get the sensors individually but you will at least need to fit an output connector and possibly also a pre-amp or passive filter.






share|improve this answer























  • What are the specifications needed for capturing around 200Hz frequencies and can I get the readings, say on a PC?
    – OMGsh
    Nov 28 at 18:05










  • The transducers mentioned by Chris will pick up any audio frequency, then you need to plug the transducer into the sound card on your computer and use any audio recording ( or sound analyzing ) software to display the signals on your computer screen. There are many websites that can show you how to do this. Let Google be your guide !
    – William Hird
    Nov 29 at 3:18















up vote
3
down vote













You might want to look at contact pickups designed for acoustic musical instruments.



Try searching for contact microphones of contact transducers. These tend to be based on piezo electric devices and sense vibrations through direct contact as opposed to acoustic microphones whcih generally use some sort of diaphragm.



Edit



The instrument pickups area available as a complete package with an analogue audio output, usually via a 1/4" jack socket. Most PCs have an audio input although you should check that the impedance of the pickup matches that of the PCs input. You can also get various balancing devices to facilitate this although it may not be essential.



As mentioned in the comments instrument pickups are designed for an audible frequency range which 200Hz is well within albeit at the low end but individual device specs should tell you their response range.



You can also get the sensors individually but you will at least need to fit an output connector and possibly also a pre-amp or passive filter.






share|improve this answer























  • What are the specifications needed for capturing around 200Hz frequencies and can I get the readings, say on a PC?
    – OMGsh
    Nov 28 at 18:05










  • The transducers mentioned by Chris will pick up any audio frequency, then you need to plug the transducer into the sound card on your computer and use any audio recording ( or sound analyzing ) software to display the signals on your computer screen. There are many websites that can show you how to do this. Let Google be your guide !
    – William Hird
    Nov 29 at 3:18













up vote
3
down vote










up vote
3
down vote









You might want to look at contact pickups designed for acoustic musical instruments.



Try searching for contact microphones of contact transducers. These tend to be based on piezo electric devices and sense vibrations through direct contact as opposed to acoustic microphones whcih generally use some sort of diaphragm.



Edit



The instrument pickups area available as a complete package with an analogue audio output, usually via a 1/4" jack socket. Most PCs have an audio input although you should check that the impedance of the pickup matches that of the PCs input. You can also get various balancing devices to facilitate this although it may not be essential.



As mentioned in the comments instrument pickups are designed for an audible frequency range which 200Hz is well within albeit at the low end but individual device specs should tell you their response range.



You can also get the sensors individually but you will at least need to fit an output connector and possibly also a pre-amp or passive filter.






share|improve this answer














You might want to look at contact pickups designed for acoustic musical instruments.



Try searching for contact microphones of contact transducers. These tend to be based on piezo electric devices and sense vibrations through direct contact as opposed to acoustic microphones whcih generally use some sort of diaphragm.



Edit



The instrument pickups area available as a complete package with an analogue audio output, usually via a 1/4" jack socket. Most PCs have an audio input although you should check that the impedance of the pickup matches that of the PCs input. You can also get various balancing devices to facilitate this although it may not be essential.



As mentioned in the comments instrument pickups are designed for an audible frequency range which 200Hz is well within albeit at the low end but individual device specs should tell you their response range.



You can also get the sensors individually but you will at least need to fit an output connector and possibly also a pre-amp or passive filter.







share|improve this answer














share|improve this answer



share|improve this answer








edited Nov 29 at 10:58

























answered Nov 28 at 16:37









Chris Johns

14.4k31335




14.4k31335












  • What are the specifications needed for capturing around 200Hz frequencies and can I get the readings, say on a PC?
    – OMGsh
    Nov 28 at 18:05










  • The transducers mentioned by Chris will pick up any audio frequency, then you need to plug the transducer into the sound card on your computer and use any audio recording ( or sound analyzing ) software to display the signals on your computer screen. There are many websites that can show you how to do this. Let Google be your guide !
    – William Hird
    Nov 29 at 3:18


















  • What are the specifications needed for capturing around 200Hz frequencies and can I get the readings, say on a PC?
    – OMGsh
    Nov 28 at 18:05










  • The transducers mentioned by Chris will pick up any audio frequency, then you need to plug the transducer into the sound card on your computer and use any audio recording ( or sound analyzing ) software to display the signals on your computer screen. There are many websites that can show you how to do this. Let Google be your guide !
    – William Hird
    Nov 29 at 3:18
















What are the specifications needed for capturing around 200Hz frequencies and can I get the readings, say on a PC?
– OMGsh
Nov 28 at 18:05




What are the specifications needed for capturing around 200Hz frequencies and can I get the readings, say on a PC?
– OMGsh
Nov 28 at 18:05












The transducers mentioned by Chris will pick up any audio frequency, then you need to plug the transducer into the sound card on your computer and use any audio recording ( or sound analyzing ) software to display the signals on your computer screen. There are many websites that can show you how to do this. Let Google be your guide !
– William Hird
Nov 29 at 3:18




The transducers mentioned by Chris will pick up any audio frequency, then you need to plug the transducer into the sound card on your computer and use any audio recording ( or sound analyzing ) software to display the signals on your computer screen. There are many websites that can show you how to do this. Let Google be your guide !
– William Hird
Nov 29 at 3:18


















draft saved

draft discarded




















































Thanks for contributing an answer to Engineering Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.





Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


Please pay close attention to the following guidance:


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fengineering.stackexchange.com%2fquestions%2f24904%2fhow-can-i-measure-the-vibrations-of-a-solid-object%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

How to change which sound is reproduced for terminal bell?

Can I use Tabulator js library in my java Spring + Thymeleaf project?

Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents