Tikz/Pgf - Surf plot with smooth color transition
I am drawing a surf
3d plot in Tikz/Pgf
using gnuplot
. This surface need to be projected on a plane, which can be achieved by adding another surf
plot.
The thing is that the transition between colors, in both surf
plots actually is not very smooth, despite using
shader=interp
One possibility is to increase the number of samples
however building becomes slow and I cannot exceed 75 samples.
An example code can be found right next
documentclass{standalone}
usepackage{pgfplots}
usepackage{tikz}
usepgfplotslibrary{patchplots}
begin{document}
begin{tikzpicture}
begin{axis} [width=textwidth,
height=textwidth,
ultra thick,
colorbar,
colorbar style={yticklabel style={text width=2.5em,
align=right,
/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1,
},
},
xlabel={$rho_x=k_xr_x$},
ylabel={$rho_y=k_yr_y$},
zlabel={$j_l(rho)$},
3d box,
zmax=2.5,
xmin=-3, xmax=3,
ymin=-3.1, ymax=3.1,
ytick={-3, -2, ..., 3},
grid=major,
grid style={line width=.1pt, draw=gray!30, dashed},
x tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
y tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
z tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
]
addplot3[surf,
shader=interp,
mesh/ordering=y varies,
domain=-3:3,
y domain=-3.1:3.1,
]
gnuplot {besj0(x**2+y**2)};
addplot3[surf,
samples=51,
shader=interp,
mesh/ordering=y varies,
domain=-3:3,
y domain=-3.1:3.1,
point meta=rawz,
z filter/.code={defpgfmathresult{2.5}},
]
gnuplot {besj0(x**2+y**2)};
end{axis}
end{tikzpicture}
end{document}
and the result of this code is the following image
Any idea on how to make a smoother transition from color to color?
tikz-pgf pgfplots 3d gnuplot smooth
add a comment |
I am drawing a surf
3d plot in Tikz/Pgf
using gnuplot
. This surface need to be projected on a plane, which can be achieved by adding another surf
plot.
The thing is that the transition between colors, in both surf
plots actually is not very smooth, despite using
shader=interp
One possibility is to increase the number of samples
however building becomes slow and I cannot exceed 75 samples.
An example code can be found right next
documentclass{standalone}
usepackage{pgfplots}
usepackage{tikz}
usepgfplotslibrary{patchplots}
begin{document}
begin{tikzpicture}
begin{axis} [width=textwidth,
height=textwidth,
ultra thick,
colorbar,
colorbar style={yticklabel style={text width=2.5em,
align=right,
/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1,
},
},
xlabel={$rho_x=k_xr_x$},
ylabel={$rho_y=k_yr_y$},
zlabel={$j_l(rho)$},
3d box,
zmax=2.5,
xmin=-3, xmax=3,
ymin=-3.1, ymax=3.1,
ytick={-3, -2, ..., 3},
grid=major,
grid style={line width=.1pt, draw=gray!30, dashed},
x tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
y tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
z tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
]
addplot3[surf,
shader=interp,
mesh/ordering=y varies,
domain=-3:3,
y domain=-3.1:3.1,
]
gnuplot {besj0(x**2+y**2)};
addplot3[surf,
samples=51,
shader=interp,
mesh/ordering=y varies,
domain=-3:3,
y domain=-3.1:3.1,
point meta=rawz,
z filter/.code={defpgfmathresult{2.5}},
]
gnuplot {besj0(x**2+y**2)};
end{axis}
end{tikzpicture}
end{document}
and the result of this code is the following image
Any idea on how to make a smoother transition from color to color?
tikz-pgf pgfplots 3d gnuplot smooth
1
With pleasure! No problem!
– Thanos
Feb 24 at 21:00
add a comment |
I am drawing a surf
3d plot in Tikz/Pgf
using gnuplot
. This surface need to be projected on a plane, which can be achieved by adding another surf
plot.
The thing is that the transition between colors, in both surf
plots actually is not very smooth, despite using
shader=interp
One possibility is to increase the number of samples
however building becomes slow and I cannot exceed 75 samples.
An example code can be found right next
documentclass{standalone}
usepackage{pgfplots}
usepackage{tikz}
usepgfplotslibrary{patchplots}
begin{document}
begin{tikzpicture}
begin{axis} [width=textwidth,
height=textwidth,
ultra thick,
colorbar,
colorbar style={yticklabel style={text width=2.5em,
align=right,
/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1,
},
},
xlabel={$rho_x=k_xr_x$},
ylabel={$rho_y=k_yr_y$},
zlabel={$j_l(rho)$},
3d box,
zmax=2.5,
xmin=-3, xmax=3,
ymin=-3.1, ymax=3.1,
ytick={-3, -2, ..., 3},
grid=major,
grid style={line width=.1pt, draw=gray!30, dashed},
x tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
y tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
z tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
]
addplot3[surf,
shader=interp,
mesh/ordering=y varies,
domain=-3:3,
y domain=-3.1:3.1,
]
gnuplot {besj0(x**2+y**2)};
addplot3[surf,
samples=51,
shader=interp,
mesh/ordering=y varies,
domain=-3:3,
y domain=-3.1:3.1,
point meta=rawz,
z filter/.code={defpgfmathresult{2.5}},
]
gnuplot {besj0(x**2+y**2)};
end{axis}
end{tikzpicture}
end{document}
and the result of this code is the following image
Any idea on how to make a smoother transition from color to color?
tikz-pgf pgfplots 3d gnuplot smooth
I am drawing a surf
3d plot in Tikz/Pgf
using gnuplot
. This surface need to be projected on a plane, which can be achieved by adding another surf
plot.
The thing is that the transition between colors, in both surf
plots actually is not very smooth, despite using
shader=interp
One possibility is to increase the number of samples
however building becomes slow and I cannot exceed 75 samples.
An example code can be found right next
documentclass{standalone}
usepackage{pgfplots}
usepackage{tikz}
usepgfplotslibrary{patchplots}
begin{document}
begin{tikzpicture}
begin{axis} [width=textwidth,
height=textwidth,
ultra thick,
colorbar,
colorbar style={yticklabel style={text width=2.5em,
align=right,
/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1,
},
},
xlabel={$rho_x=k_xr_x$},
ylabel={$rho_y=k_yr_y$},
zlabel={$j_l(rho)$},
3d box,
zmax=2.5,
xmin=-3, xmax=3,
ymin=-3.1, ymax=3.1,
ytick={-3, -2, ..., 3},
grid=major,
grid style={line width=.1pt, draw=gray!30, dashed},
x tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
y tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
z tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
]
addplot3[surf,
shader=interp,
mesh/ordering=y varies,
domain=-3:3,
y domain=-3.1:3.1,
]
gnuplot {besj0(x**2+y**2)};
addplot3[surf,
samples=51,
shader=interp,
mesh/ordering=y varies,
domain=-3:3,
y domain=-3.1:3.1,
point meta=rawz,
z filter/.code={defpgfmathresult{2.5}},
]
gnuplot {besj0(x**2+y**2)};
end{axis}
end{tikzpicture}
end{document}
and the result of this code is the following image
Any idea on how to make a smoother transition from color to color?
tikz-pgf pgfplots 3d gnuplot smooth
tikz-pgf pgfplots 3d gnuplot smooth
edited Feb 24 at 21:00
Thanos
asked Feb 24 at 16:32
ThanosThanos
6,0801454107
6,0801454107
1
With pleasure! No problem!
– Thanos
Feb 24 at 21:00
add a comment |
1
With pleasure! No problem!
– Thanos
Feb 24 at 21:00
1
1
With pleasure! No problem!
– Thanos
Feb 24 at 21:00
With pleasure! No problem!
– Thanos
Feb 24 at 21:00
add a comment |
1 Answer
1
active
oldest
votes
If your main concern is the color transitions, then you may want to use a polar plot because the function only depends on the radius and not on the angle. Then you could increase the samples in radial direction while leaving the samples in angular direction comparatively small.
documentclass[tikz,border=3.14mm]{standalone}
usepackage{pgfplots}
pgfplotsset{compat=1.16}
usepgfplotslibrary{patchplots}
begin{document}
begin{tikzpicture}
begin{axis} [width=textwidth,
height=textwidth,
ultra thick,
colorbar,
colorbar style={yticklabel style={text width=2.5em,
align=right,
/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1,
},
},
xlabel={$rho_x=k_xr_x$},
ylabel={$rho_y=k_yr_y$},
zlabel={$j_l(rho)$},
3d box,
zmax=2.5,
xmin=-3, xmax=3,
ymin=-3.1, ymax=3.1,
ytick={-3, -2, ..., 3},
grid=major,
grid style={line width=.1pt, draw=gray!30, dashed},
x tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
y tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
z tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
data cs=polar,
]
addplot3[surf, samples=37,samples y=101,
shader=interp,
z buffer=sort,
%mesh/ordering=y varies,
domain=0:360,
y domain=3.1:0,
]
gnuplot {besj0(y**2)};
addplot3[surf, samples=36, samples y=101,
shader=interp,
%mesh/ordering=y varies,
domain=0:360,
y domain=0:3.1,
point meta=rawz,
z filter/.code={defpgfmathresult{2.5}},
]
gnuplot {besj0(y**2)};
end{axis}
end{tikzpicture}
end{document}
As a "side-effect" the wiggles will also disappear as they result from plotting a rotationally symmetric function in cartesian coordinates.
And here is a combination of a cartesian and a polar plot.
documentclass[tikz,border=3.14mm]{standalone}
usepackage{pgfplots}
pgfplotsset{compat=1.16}
usepgfplotslibrary{patchplots}
begin{document}
begin{tikzpicture}
begin{axis} [width=textwidth,
height=textwidth,
ultra thick,
colorbar,
colorbar style={yticklabel style={text width=2.5em,
align=right,
/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1,
},
},
xlabel={$rho_x=k_xr_x$},
ylabel={$rho_y=k_yr_y$},
zlabel={$j_l(rho)$},
3d box,
zmax=2.5,
xmin=-3, xmax=3,
ymin=-3.1, ymax=3.1,
ytick={-3, -2, ..., 3},
grid=major,
grid style={line width=.1pt, draw=gray!30, dashed},
x tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
y tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
z tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
]
addplot3[surf, samples=75,
shader=interp,
mesh/ordering=y varies,
domain=-3:3,
y domain=-3.1:3.1,
]
gnuplot {besj0(x**2+y**2)};
addplot3[surf, samples=36, samples y=101,
shader=interp,
%mesh/ordering=y varies,
domain=0:360,
y domain=0:3.1,
point meta=rawz,
data cs=polar,
z filter/.code={defpgfmathresult{2.5}},
]
gnuplot {besj0(y**2)};
end{axis}
end{tikzpicture}
end{document}
Thank you very much for your answer! The point is that in the 3d surface the folding of the function is more prominent, therefore the wiggles are indeed needed! I could however use a polar plot on the projection. Is this possible?
– Thanos
Feb 24 at 18:58
@Thanos Yes, but I do not understand what you mean by "folding".
– marmot
Feb 24 at 19:00
I mean the wiggles you mentioned in the side-effect.
– Thanos
Feb 24 at 19:00
@Thanos But aren't the wiggles "unphysical", meaning that the true Bessel function doesn't have them (since they imply an angular dependence, which J0 does not have)?
– marmot
Feb 24 at 19:02
@ marmot You are perfectly right. However, I believe that for illustration reasons, someone can better observe the oscillating behaviour.
– Thanos
Feb 24 at 19:07
|
show 3 more comments
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "85"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f476469%2ftikz-pgf-surf-plot-with-smooth-color-transition%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
If your main concern is the color transitions, then you may want to use a polar plot because the function only depends on the radius and not on the angle. Then you could increase the samples in radial direction while leaving the samples in angular direction comparatively small.
documentclass[tikz,border=3.14mm]{standalone}
usepackage{pgfplots}
pgfplotsset{compat=1.16}
usepgfplotslibrary{patchplots}
begin{document}
begin{tikzpicture}
begin{axis} [width=textwidth,
height=textwidth,
ultra thick,
colorbar,
colorbar style={yticklabel style={text width=2.5em,
align=right,
/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1,
},
},
xlabel={$rho_x=k_xr_x$},
ylabel={$rho_y=k_yr_y$},
zlabel={$j_l(rho)$},
3d box,
zmax=2.5,
xmin=-3, xmax=3,
ymin=-3.1, ymax=3.1,
ytick={-3, -2, ..., 3},
grid=major,
grid style={line width=.1pt, draw=gray!30, dashed},
x tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
y tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
z tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
data cs=polar,
]
addplot3[surf, samples=37,samples y=101,
shader=interp,
z buffer=sort,
%mesh/ordering=y varies,
domain=0:360,
y domain=3.1:0,
]
gnuplot {besj0(y**2)};
addplot3[surf, samples=36, samples y=101,
shader=interp,
%mesh/ordering=y varies,
domain=0:360,
y domain=0:3.1,
point meta=rawz,
z filter/.code={defpgfmathresult{2.5}},
]
gnuplot {besj0(y**2)};
end{axis}
end{tikzpicture}
end{document}
As a "side-effect" the wiggles will also disappear as they result from plotting a rotationally symmetric function in cartesian coordinates.
And here is a combination of a cartesian and a polar plot.
documentclass[tikz,border=3.14mm]{standalone}
usepackage{pgfplots}
pgfplotsset{compat=1.16}
usepgfplotslibrary{patchplots}
begin{document}
begin{tikzpicture}
begin{axis} [width=textwidth,
height=textwidth,
ultra thick,
colorbar,
colorbar style={yticklabel style={text width=2.5em,
align=right,
/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1,
},
},
xlabel={$rho_x=k_xr_x$},
ylabel={$rho_y=k_yr_y$},
zlabel={$j_l(rho)$},
3d box,
zmax=2.5,
xmin=-3, xmax=3,
ymin=-3.1, ymax=3.1,
ytick={-3, -2, ..., 3},
grid=major,
grid style={line width=.1pt, draw=gray!30, dashed},
x tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
y tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
z tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
]
addplot3[surf, samples=75,
shader=interp,
mesh/ordering=y varies,
domain=-3:3,
y domain=-3.1:3.1,
]
gnuplot {besj0(x**2+y**2)};
addplot3[surf, samples=36, samples y=101,
shader=interp,
%mesh/ordering=y varies,
domain=0:360,
y domain=0:3.1,
point meta=rawz,
data cs=polar,
z filter/.code={defpgfmathresult{2.5}},
]
gnuplot {besj0(y**2)};
end{axis}
end{tikzpicture}
end{document}
Thank you very much for your answer! The point is that in the 3d surface the folding of the function is more prominent, therefore the wiggles are indeed needed! I could however use a polar plot on the projection. Is this possible?
– Thanos
Feb 24 at 18:58
@Thanos Yes, but I do not understand what you mean by "folding".
– marmot
Feb 24 at 19:00
I mean the wiggles you mentioned in the side-effect.
– Thanos
Feb 24 at 19:00
@Thanos But aren't the wiggles "unphysical", meaning that the true Bessel function doesn't have them (since they imply an angular dependence, which J0 does not have)?
– marmot
Feb 24 at 19:02
@ marmot You are perfectly right. However, I believe that for illustration reasons, someone can better observe the oscillating behaviour.
– Thanos
Feb 24 at 19:07
|
show 3 more comments
If your main concern is the color transitions, then you may want to use a polar plot because the function only depends on the radius and not on the angle. Then you could increase the samples in radial direction while leaving the samples in angular direction comparatively small.
documentclass[tikz,border=3.14mm]{standalone}
usepackage{pgfplots}
pgfplotsset{compat=1.16}
usepgfplotslibrary{patchplots}
begin{document}
begin{tikzpicture}
begin{axis} [width=textwidth,
height=textwidth,
ultra thick,
colorbar,
colorbar style={yticklabel style={text width=2.5em,
align=right,
/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1,
},
},
xlabel={$rho_x=k_xr_x$},
ylabel={$rho_y=k_yr_y$},
zlabel={$j_l(rho)$},
3d box,
zmax=2.5,
xmin=-3, xmax=3,
ymin=-3.1, ymax=3.1,
ytick={-3, -2, ..., 3},
grid=major,
grid style={line width=.1pt, draw=gray!30, dashed},
x tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
y tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
z tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
data cs=polar,
]
addplot3[surf, samples=37,samples y=101,
shader=interp,
z buffer=sort,
%mesh/ordering=y varies,
domain=0:360,
y domain=3.1:0,
]
gnuplot {besj0(y**2)};
addplot3[surf, samples=36, samples y=101,
shader=interp,
%mesh/ordering=y varies,
domain=0:360,
y domain=0:3.1,
point meta=rawz,
z filter/.code={defpgfmathresult{2.5}},
]
gnuplot {besj0(y**2)};
end{axis}
end{tikzpicture}
end{document}
As a "side-effect" the wiggles will also disappear as they result from plotting a rotationally symmetric function in cartesian coordinates.
And here is a combination of a cartesian and a polar plot.
documentclass[tikz,border=3.14mm]{standalone}
usepackage{pgfplots}
pgfplotsset{compat=1.16}
usepgfplotslibrary{patchplots}
begin{document}
begin{tikzpicture}
begin{axis} [width=textwidth,
height=textwidth,
ultra thick,
colorbar,
colorbar style={yticklabel style={text width=2.5em,
align=right,
/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1,
},
},
xlabel={$rho_x=k_xr_x$},
ylabel={$rho_y=k_yr_y$},
zlabel={$j_l(rho)$},
3d box,
zmax=2.5,
xmin=-3, xmax=3,
ymin=-3.1, ymax=3.1,
ytick={-3, -2, ..., 3},
grid=major,
grid style={line width=.1pt, draw=gray!30, dashed},
x tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
y tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
z tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
]
addplot3[surf, samples=75,
shader=interp,
mesh/ordering=y varies,
domain=-3:3,
y domain=-3.1:3.1,
]
gnuplot {besj0(x**2+y**2)};
addplot3[surf, samples=36, samples y=101,
shader=interp,
%mesh/ordering=y varies,
domain=0:360,
y domain=0:3.1,
point meta=rawz,
data cs=polar,
z filter/.code={defpgfmathresult{2.5}},
]
gnuplot {besj0(y**2)};
end{axis}
end{tikzpicture}
end{document}
Thank you very much for your answer! The point is that in the 3d surface the folding of the function is more prominent, therefore the wiggles are indeed needed! I could however use a polar plot on the projection. Is this possible?
– Thanos
Feb 24 at 18:58
@Thanos Yes, but I do not understand what you mean by "folding".
– marmot
Feb 24 at 19:00
I mean the wiggles you mentioned in the side-effect.
– Thanos
Feb 24 at 19:00
@Thanos But aren't the wiggles "unphysical", meaning that the true Bessel function doesn't have them (since they imply an angular dependence, which J0 does not have)?
– marmot
Feb 24 at 19:02
@ marmot You are perfectly right. However, I believe that for illustration reasons, someone can better observe the oscillating behaviour.
– Thanos
Feb 24 at 19:07
|
show 3 more comments
If your main concern is the color transitions, then you may want to use a polar plot because the function only depends on the radius and not on the angle. Then you could increase the samples in radial direction while leaving the samples in angular direction comparatively small.
documentclass[tikz,border=3.14mm]{standalone}
usepackage{pgfplots}
pgfplotsset{compat=1.16}
usepgfplotslibrary{patchplots}
begin{document}
begin{tikzpicture}
begin{axis} [width=textwidth,
height=textwidth,
ultra thick,
colorbar,
colorbar style={yticklabel style={text width=2.5em,
align=right,
/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1,
},
},
xlabel={$rho_x=k_xr_x$},
ylabel={$rho_y=k_yr_y$},
zlabel={$j_l(rho)$},
3d box,
zmax=2.5,
xmin=-3, xmax=3,
ymin=-3.1, ymax=3.1,
ytick={-3, -2, ..., 3},
grid=major,
grid style={line width=.1pt, draw=gray!30, dashed},
x tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
y tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
z tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
data cs=polar,
]
addplot3[surf, samples=37,samples y=101,
shader=interp,
z buffer=sort,
%mesh/ordering=y varies,
domain=0:360,
y domain=3.1:0,
]
gnuplot {besj0(y**2)};
addplot3[surf, samples=36, samples y=101,
shader=interp,
%mesh/ordering=y varies,
domain=0:360,
y domain=0:3.1,
point meta=rawz,
z filter/.code={defpgfmathresult{2.5}},
]
gnuplot {besj0(y**2)};
end{axis}
end{tikzpicture}
end{document}
As a "side-effect" the wiggles will also disappear as they result from plotting a rotationally symmetric function in cartesian coordinates.
And here is a combination of a cartesian and a polar plot.
documentclass[tikz,border=3.14mm]{standalone}
usepackage{pgfplots}
pgfplotsset{compat=1.16}
usepgfplotslibrary{patchplots}
begin{document}
begin{tikzpicture}
begin{axis} [width=textwidth,
height=textwidth,
ultra thick,
colorbar,
colorbar style={yticklabel style={text width=2.5em,
align=right,
/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1,
},
},
xlabel={$rho_x=k_xr_x$},
ylabel={$rho_y=k_yr_y$},
zlabel={$j_l(rho)$},
3d box,
zmax=2.5,
xmin=-3, xmax=3,
ymin=-3.1, ymax=3.1,
ytick={-3, -2, ..., 3},
grid=major,
grid style={line width=.1pt, draw=gray!30, dashed},
x tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
y tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
z tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
]
addplot3[surf, samples=75,
shader=interp,
mesh/ordering=y varies,
domain=-3:3,
y domain=-3.1:3.1,
]
gnuplot {besj0(x**2+y**2)};
addplot3[surf, samples=36, samples y=101,
shader=interp,
%mesh/ordering=y varies,
domain=0:360,
y domain=0:3.1,
point meta=rawz,
data cs=polar,
z filter/.code={defpgfmathresult{2.5}},
]
gnuplot {besj0(y**2)};
end{axis}
end{tikzpicture}
end{document}
If your main concern is the color transitions, then you may want to use a polar plot because the function only depends on the radius and not on the angle. Then you could increase the samples in radial direction while leaving the samples in angular direction comparatively small.
documentclass[tikz,border=3.14mm]{standalone}
usepackage{pgfplots}
pgfplotsset{compat=1.16}
usepgfplotslibrary{patchplots}
begin{document}
begin{tikzpicture}
begin{axis} [width=textwidth,
height=textwidth,
ultra thick,
colorbar,
colorbar style={yticklabel style={text width=2.5em,
align=right,
/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1,
},
},
xlabel={$rho_x=k_xr_x$},
ylabel={$rho_y=k_yr_y$},
zlabel={$j_l(rho)$},
3d box,
zmax=2.5,
xmin=-3, xmax=3,
ymin=-3.1, ymax=3.1,
ytick={-3, -2, ..., 3},
grid=major,
grid style={line width=.1pt, draw=gray!30, dashed},
x tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
y tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
z tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
data cs=polar,
]
addplot3[surf, samples=37,samples y=101,
shader=interp,
z buffer=sort,
%mesh/ordering=y varies,
domain=0:360,
y domain=3.1:0,
]
gnuplot {besj0(y**2)};
addplot3[surf, samples=36, samples y=101,
shader=interp,
%mesh/ordering=y varies,
domain=0:360,
y domain=0:3.1,
point meta=rawz,
z filter/.code={defpgfmathresult{2.5}},
]
gnuplot {besj0(y**2)};
end{axis}
end{tikzpicture}
end{document}
As a "side-effect" the wiggles will also disappear as they result from plotting a rotationally symmetric function in cartesian coordinates.
And here is a combination of a cartesian and a polar plot.
documentclass[tikz,border=3.14mm]{standalone}
usepackage{pgfplots}
pgfplotsset{compat=1.16}
usepgfplotslibrary{patchplots}
begin{document}
begin{tikzpicture}
begin{axis} [width=textwidth,
height=textwidth,
ultra thick,
colorbar,
colorbar style={yticklabel style={text width=2.5em,
align=right,
/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1,
},
},
xlabel={$rho_x=k_xr_x$},
ylabel={$rho_y=k_yr_y$},
zlabel={$j_l(rho)$},
3d box,
zmax=2.5,
xmin=-3, xmax=3,
ymin=-3.1, ymax=3.1,
ytick={-3, -2, ..., 3},
grid=major,
grid style={line width=.1pt, draw=gray!30, dashed},
x tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
y tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
z tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
]
addplot3[surf, samples=75,
shader=interp,
mesh/ordering=y varies,
domain=-3:3,
y domain=-3.1:3.1,
]
gnuplot {besj0(x**2+y**2)};
addplot3[surf, samples=36, samples y=101,
shader=interp,
%mesh/ordering=y varies,
domain=0:360,
y domain=0:3.1,
point meta=rawz,
data cs=polar,
z filter/.code={defpgfmathresult{2.5}},
]
gnuplot {besj0(y**2)};
end{axis}
end{tikzpicture}
end{document}
edited Feb 24 at 19:37
answered Feb 24 at 18:44
marmotmarmot
105k4126241
105k4126241
Thank you very much for your answer! The point is that in the 3d surface the folding of the function is more prominent, therefore the wiggles are indeed needed! I could however use a polar plot on the projection. Is this possible?
– Thanos
Feb 24 at 18:58
@Thanos Yes, but I do not understand what you mean by "folding".
– marmot
Feb 24 at 19:00
I mean the wiggles you mentioned in the side-effect.
– Thanos
Feb 24 at 19:00
@Thanos But aren't the wiggles "unphysical", meaning that the true Bessel function doesn't have them (since they imply an angular dependence, which J0 does not have)?
– marmot
Feb 24 at 19:02
@ marmot You are perfectly right. However, I believe that for illustration reasons, someone can better observe the oscillating behaviour.
– Thanos
Feb 24 at 19:07
|
show 3 more comments
Thank you very much for your answer! The point is that in the 3d surface the folding of the function is more prominent, therefore the wiggles are indeed needed! I could however use a polar plot on the projection. Is this possible?
– Thanos
Feb 24 at 18:58
@Thanos Yes, but I do not understand what you mean by "folding".
– marmot
Feb 24 at 19:00
I mean the wiggles you mentioned in the side-effect.
– Thanos
Feb 24 at 19:00
@Thanos But aren't the wiggles "unphysical", meaning that the true Bessel function doesn't have them (since they imply an angular dependence, which J0 does not have)?
– marmot
Feb 24 at 19:02
@ marmot You are perfectly right. However, I believe that for illustration reasons, someone can better observe the oscillating behaviour.
– Thanos
Feb 24 at 19:07
Thank you very much for your answer! The point is that in the 3d surface the folding of the function is more prominent, therefore the wiggles are indeed needed! I could however use a polar plot on the projection. Is this possible?
– Thanos
Feb 24 at 18:58
Thank you very much for your answer! The point is that in the 3d surface the folding of the function is more prominent, therefore the wiggles are indeed needed! I could however use a polar plot on the projection. Is this possible?
– Thanos
Feb 24 at 18:58
@Thanos Yes, but I do not understand what you mean by "folding".
– marmot
Feb 24 at 19:00
@Thanos Yes, but I do not understand what you mean by "folding".
– marmot
Feb 24 at 19:00
I mean the wiggles you mentioned in the side-effect.
– Thanos
Feb 24 at 19:00
I mean the wiggles you mentioned in the side-effect.
– Thanos
Feb 24 at 19:00
@Thanos But aren't the wiggles "unphysical", meaning that the true Bessel function doesn't have them (since they imply an angular dependence, which J0 does not have)?
– marmot
Feb 24 at 19:02
@Thanos But aren't the wiggles "unphysical", meaning that the true Bessel function doesn't have them (since they imply an angular dependence, which J0 does not have)?
– marmot
Feb 24 at 19:02
@ marmot You are perfectly right. However, I believe that for illustration reasons, someone can better observe the oscillating behaviour.
– Thanos
Feb 24 at 19:07
@ marmot You are perfectly right. However, I believe that for illustration reasons, someone can better observe the oscillating behaviour.
– Thanos
Feb 24 at 19:07
|
show 3 more comments
Thanks for contributing an answer to TeX - LaTeX Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f476469%2ftikz-pgf-surf-plot-with-smooth-color-transition%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
With pleasure! No problem!
– Thanos
Feb 24 at 21:00