Ramanujan congruence mod 7
$begingroup$
Hello I am trying to prove this congruence:
$$P(7n+5)equiv 0 pmod{7}$$
In order to do that I have done the next thing:
We have that
$displaystylesum_{ngeq0};P(n)q^{n}=frac{1}{(q;q)_{infty}}$
we multiply by $q^{2}$ then
begin{eqnarray}
displaystylesum_{ngeq0};P(n)q^{n+2}&=&frac{q^{2}}{(q;q)_{infty}}\
&=& frac{q^{2}((q;q)^{3}_{infty})^{2}}{(q;q)_{infty}^{7}}
end{eqnarray}
Therefore the coefficient of $q^{7n+7}$ in the LHS is $P(7n+5)$ therefore we have to check that the coefficient of $q^{7n+7}$ of $ frac{q^{2}((q;q)^{3}_{infty})^{2}}{(q;q)_{infty}^{7}}$ is $equiv 0(mod ; 7)$.
Now we have that $(q;q)^{3}_{infty}=displaystylesum_{ngeq0} (-1)^{n}(2n+1)q^{frac{n(n+1)}{2}}$, therefore
begin{eqnarray}
q^{2}((q;q)^{3}_{infty})^{2}&=&(q(q;q)^{3}_{infty})^{2}\
&=& displaystyle sum_{n,m geq0} (-1)^{n}(2n+1)(2m+1)q^{frac{n(n+1)}{2}+frac{m(m+1)}{2}+2}
end{eqnarray}
Now we will check when $frac{n(n+1)}{2}+frac{m(m+1)}{2}+2$ is a mutiply of $7$
Note that $$(2n+1)^{2}+(2m+1)^{2}=8left(frac{n(n+1)}{2}+frac{m(m+1)}{2}+2right)-14$$
Then $frac{n(n+1)}{2}+frac{m(m+1)}{2}+2equiv 0(mod;7)$ if and only if $(2n+1)^{2}+(2m+1)^{2}equiv0(mod ;7)$ only if $(2n+1)^{2}equiv0(mod ;7)$ and $(2m+1)^{2}equiv0(mod ;7)$ Then $2n+1equiv0(mod ;7)$ and $2m+1equiv0(mod ;7)$.
Therefore the coefficient of $q^{7n+7}$ in $q^{2}((q;q)^{3}_{infty})^{2}$ is is multiple of 7.
I do not know if that is correct this idea and also I do not know how to do it for $frac{1}{(q;q)^{7}_{infty}}$. I think I can use $$frac{1}{(1-q)^{7}}equiv frac{1}{1-q^{7}}(mod;7)$$ so that I can have $$frac{1}{(q;q)^{7}_{infty}}equivfrac{1}{(q^{7};q^{7})_{infty}}(mod; 7 )$$
But I do not know how to procede with this. I woud appreciate any hint you can give me.
Thank you for your time!
integer-partitions q-series
$endgroup$
add a comment |
$begingroup$
Hello I am trying to prove this congruence:
$$P(7n+5)equiv 0 pmod{7}$$
In order to do that I have done the next thing:
We have that
$displaystylesum_{ngeq0};P(n)q^{n}=frac{1}{(q;q)_{infty}}$
we multiply by $q^{2}$ then
begin{eqnarray}
displaystylesum_{ngeq0};P(n)q^{n+2}&=&frac{q^{2}}{(q;q)_{infty}}\
&=& frac{q^{2}((q;q)^{3}_{infty})^{2}}{(q;q)_{infty}^{7}}
end{eqnarray}
Therefore the coefficient of $q^{7n+7}$ in the LHS is $P(7n+5)$ therefore we have to check that the coefficient of $q^{7n+7}$ of $ frac{q^{2}((q;q)^{3}_{infty})^{2}}{(q;q)_{infty}^{7}}$ is $equiv 0(mod ; 7)$.
Now we have that $(q;q)^{3}_{infty}=displaystylesum_{ngeq0} (-1)^{n}(2n+1)q^{frac{n(n+1)}{2}}$, therefore
begin{eqnarray}
q^{2}((q;q)^{3}_{infty})^{2}&=&(q(q;q)^{3}_{infty})^{2}\
&=& displaystyle sum_{n,m geq0} (-1)^{n}(2n+1)(2m+1)q^{frac{n(n+1)}{2}+frac{m(m+1)}{2}+2}
end{eqnarray}
Now we will check when $frac{n(n+1)}{2}+frac{m(m+1)}{2}+2$ is a mutiply of $7$
Note that $$(2n+1)^{2}+(2m+1)^{2}=8left(frac{n(n+1)}{2}+frac{m(m+1)}{2}+2right)-14$$
Then $frac{n(n+1)}{2}+frac{m(m+1)}{2}+2equiv 0(mod;7)$ if and only if $(2n+1)^{2}+(2m+1)^{2}equiv0(mod ;7)$ only if $(2n+1)^{2}equiv0(mod ;7)$ and $(2m+1)^{2}equiv0(mod ;7)$ Then $2n+1equiv0(mod ;7)$ and $2m+1equiv0(mod ;7)$.
Therefore the coefficient of $q^{7n+7}$ in $q^{2}((q;q)^{3}_{infty})^{2}$ is is multiple of 7.
I do not know if that is correct this idea and also I do not know how to do it for $frac{1}{(q;q)^{7}_{infty}}$. I think I can use $$frac{1}{(1-q)^{7}}equiv frac{1}{1-q^{7}}(mod;7)$$ so that I can have $$frac{1}{(q;q)^{7}_{infty}}equivfrac{1}{(q^{7};q^{7})_{infty}}(mod; 7 )$$
But I do not know how to procede with this. I woud appreciate any hint you can give me.
Thank you for your time!
integer-partitions q-series
$endgroup$
$begingroup$
To be clear: you're satisfied with your proof that $$[q^{7n+7}]q^{2}((q;q)^{3}_{infty})^{2} equiv 0 pmod 7$$ and you want to show that $$[q^{7n+7}]frac{q^{2}((q;q)^{3}_{infty})^{2}}{(q^{7};q^{7})_{infty}} equiv 0 pmod 7$$?
$endgroup$
– Peter Taylor
Dec 5 '18 at 16:33
$begingroup$
Of course but I do not know how to finish it!
$endgroup$
– Liddo
Dec 5 '18 at 16:53
$begingroup$
It is of interest to know that Ramanujan proved this congruence using the same method. He provided another more complicated proof by giving a closed form for $sum_{n=0}^{infty} p(7n+5)q^n$. See this post for more details.
$endgroup$
– Paramanand Singh
Dec 6 '18 at 17:13
add a comment |
$begingroup$
Hello I am trying to prove this congruence:
$$P(7n+5)equiv 0 pmod{7}$$
In order to do that I have done the next thing:
We have that
$displaystylesum_{ngeq0};P(n)q^{n}=frac{1}{(q;q)_{infty}}$
we multiply by $q^{2}$ then
begin{eqnarray}
displaystylesum_{ngeq0};P(n)q^{n+2}&=&frac{q^{2}}{(q;q)_{infty}}\
&=& frac{q^{2}((q;q)^{3}_{infty})^{2}}{(q;q)_{infty}^{7}}
end{eqnarray}
Therefore the coefficient of $q^{7n+7}$ in the LHS is $P(7n+5)$ therefore we have to check that the coefficient of $q^{7n+7}$ of $ frac{q^{2}((q;q)^{3}_{infty})^{2}}{(q;q)_{infty}^{7}}$ is $equiv 0(mod ; 7)$.
Now we have that $(q;q)^{3}_{infty}=displaystylesum_{ngeq0} (-1)^{n}(2n+1)q^{frac{n(n+1)}{2}}$, therefore
begin{eqnarray}
q^{2}((q;q)^{3}_{infty})^{2}&=&(q(q;q)^{3}_{infty})^{2}\
&=& displaystyle sum_{n,m geq0} (-1)^{n}(2n+1)(2m+1)q^{frac{n(n+1)}{2}+frac{m(m+1)}{2}+2}
end{eqnarray}
Now we will check when $frac{n(n+1)}{2}+frac{m(m+1)}{2}+2$ is a mutiply of $7$
Note that $$(2n+1)^{2}+(2m+1)^{2}=8left(frac{n(n+1)}{2}+frac{m(m+1)}{2}+2right)-14$$
Then $frac{n(n+1)}{2}+frac{m(m+1)}{2}+2equiv 0(mod;7)$ if and only if $(2n+1)^{2}+(2m+1)^{2}equiv0(mod ;7)$ only if $(2n+1)^{2}equiv0(mod ;7)$ and $(2m+1)^{2}equiv0(mod ;7)$ Then $2n+1equiv0(mod ;7)$ and $2m+1equiv0(mod ;7)$.
Therefore the coefficient of $q^{7n+7}$ in $q^{2}((q;q)^{3}_{infty})^{2}$ is is multiple of 7.
I do not know if that is correct this idea and also I do not know how to do it for $frac{1}{(q;q)^{7}_{infty}}$. I think I can use $$frac{1}{(1-q)^{7}}equiv frac{1}{1-q^{7}}(mod;7)$$ so that I can have $$frac{1}{(q;q)^{7}_{infty}}equivfrac{1}{(q^{7};q^{7})_{infty}}(mod; 7 )$$
But I do not know how to procede with this. I woud appreciate any hint you can give me.
Thank you for your time!
integer-partitions q-series
$endgroup$
Hello I am trying to prove this congruence:
$$P(7n+5)equiv 0 pmod{7}$$
In order to do that I have done the next thing:
We have that
$displaystylesum_{ngeq0};P(n)q^{n}=frac{1}{(q;q)_{infty}}$
we multiply by $q^{2}$ then
begin{eqnarray}
displaystylesum_{ngeq0};P(n)q^{n+2}&=&frac{q^{2}}{(q;q)_{infty}}\
&=& frac{q^{2}((q;q)^{3}_{infty})^{2}}{(q;q)_{infty}^{7}}
end{eqnarray}
Therefore the coefficient of $q^{7n+7}$ in the LHS is $P(7n+5)$ therefore we have to check that the coefficient of $q^{7n+7}$ of $ frac{q^{2}((q;q)^{3}_{infty})^{2}}{(q;q)_{infty}^{7}}$ is $equiv 0(mod ; 7)$.
Now we have that $(q;q)^{3}_{infty}=displaystylesum_{ngeq0} (-1)^{n}(2n+1)q^{frac{n(n+1)}{2}}$, therefore
begin{eqnarray}
q^{2}((q;q)^{3}_{infty})^{2}&=&(q(q;q)^{3}_{infty})^{2}\
&=& displaystyle sum_{n,m geq0} (-1)^{n}(2n+1)(2m+1)q^{frac{n(n+1)}{2}+frac{m(m+1)}{2}+2}
end{eqnarray}
Now we will check when $frac{n(n+1)}{2}+frac{m(m+1)}{2}+2$ is a mutiply of $7$
Note that $$(2n+1)^{2}+(2m+1)^{2}=8left(frac{n(n+1)}{2}+frac{m(m+1)}{2}+2right)-14$$
Then $frac{n(n+1)}{2}+frac{m(m+1)}{2}+2equiv 0(mod;7)$ if and only if $(2n+1)^{2}+(2m+1)^{2}equiv0(mod ;7)$ only if $(2n+1)^{2}equiv0(mod ;7)$ and $(2m+1)^{2}equiv0(mod ;7)$ Then $2n+1equiv0(mod ;7)$ and $2m+1equiv0(mod ;7)$.
Therefore the coefficient of $q^{7n+7}$ in $q^{2}((q;q)^{3}_{infty})^{2}$ is is multiple of 7.
I do not know if that is correct this idea and also I do not know how to do it for $frac{1}{(q;q)^{7}_{infty}}$. I think I can use $$frac{1}{(1-q)^{7}}equiv frac{1}{1-q^{7}}(mod;7)$$ so that I can have $$frac{1}{(q;q)^{7}_{infty}}equivfrac{1}{(q^{7};q^{7})_{infty}}(mod; 7 )$$
But I do not know how to procede with this. I woud appreciate any hint you can give me.
Thank you for your time!
integer-partitions q-series
integer-partitions q-series
edited Dec 5 '18 at 15:36
gt6989b
34.6k22456
34.6k22456
asked Dec 5 '18 at 15:29
LiddoLiddo
20619
20619
$begingroup$
To be clear: you're satisfied with your proof that $$[q^{7n+7}]q^{2}((q;q)^{3}_{infty})^{2} equiv 0 pmod 7$$ and you want to show that $$[q^{7n+7}]frac{q^{2}((q;q)^{3}_{infty})^{2}}{(q^{7};q^{7})_{infty}} equiv 0 pmod 7$$?
$endgroup$
– Peter Taylor
Dec 5 '18 at 16:33
$begingroup$
Of course but I do not know how to finish it!
$endgroup$
– Liddo
Dec 5 '18 at 16:53
$begingroup$
It is of interest to know that Ramanujan proved this congruence using the same method. He provided another more complicated proof by giving a closed form for $sum_{n=0}^{infty} p(7n+5)q^n$. See this post for more details.
$endgroup$
– Paramanand Singh
Dec 6 '18 at 17:13
add a comment |
$begingroup$
To be clear: you're satisfied with your proof that $$[q^{7n+7}]q^{2}((q;q)^{3}_{infty})^{2} equiv 0 pmod 7$$ and you want to show that $$[q^{7n+7}]frac{q^{2}((q;q)^{3}_{infty})^{2}}{(q^{7};q^{7})_{infty}} equiv 0 pmod 7$$?
$endgroup$
– Peter Taylor
Dec 5 '18 at 16:33
$begingroup$
Of course but I do not know how to finish it!
$endgroup$
– Liddo
Dec 5 '18 at 16:53
$begingroup$
It is of interest to know that Ramanujan proved this congruence using the same method. He provided another more complicated proof by giving a closed form for $sum_{n=0}^{infty} p(7n+5)q^n$. See this post for more details.
$endgroup$
– Paramanand Singh
Dec 6 '18 at 17:13
$begingroup$
To be clear: you're satisfied with your proof that $$[q^{7n+7}]q^{2}((q;q)^{3}_{infty})^{2} equiv 0 pmod 7$$ and you want to show that $$[q^{7n+7}]frac{q^{2}((q;q)^{3}_{infty})^{2}}{(q^{7};q^{7})_{infty}} equiv 0 pmod 7$$?
$endgroup$
– Peter Taylor
Dec 5 '18 at 16:33
$begingroup$
To be clear: you're satisfied with your proof that $$[q^{7n+7}]q^{2}((q;q)^{3}_{infty})^{2} equiv 0 pmod 7$$ and you want to show that $$[q^{7n+7}]frac{q^{2}((q;q)^{3}_{infty})^{2}}{(q^{7};q^{7})_{infty}} equiv 0 pmod 7$$?
$endgroup$
– Peter Taylor
Dec 5 '18 at 16:33
$begingroup$
Of course but I do not know how to finish it!
$endgroup$
– Liddo
Dec 5 '18 at 16:53
$begingroup$
Of course but I do not know how to finish it!
$endgroup$
– Liddo
Dec 5 '18 at 16:53
$begingroup$
It is of interest to know that Ramanujan proved this congruence using the same method. He provided another more complicated proof by giving a closed form for $sum_{n=0}^{infty} p(7n+5)q^n$. See this post for more details.
$endgroup$
– Paramanand Singh
Dec 6 '18 at 17:13
$begingroup$
It is of interest to know that Ramanujan proved this congruence using the same method. He provided another more complicated proof by giving a closed form for $sum_{n=0}^{infty} p(7n+5)q^n$. See this post for more details.
$endgroup$
– Paramanand Singh
Dec 6 '18 at 17:13
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
I think the bit you're missing is $$frac{1}{1 - z} = 1 + z + z^2 + cdots$$
Therefore $$frac{1}{(q^7;q^7)_infty} = prod_{k=1}^infty sum_{j=0}^infty q^{7jk}$$
which clearly only has non-zero coefficients for powers of seven.
Thus the coefficient $[q^{7n+7}]frac{q^{2}((q;q)^{3}_{infty})^{2}}{(q^{7};q^{7})_{infty}}$ is some integer-weighted sum* of coefficients $[q^{7i}]q^{2}((q;q)^{3}_{infty})^{2}$.
* It is, of course, quite easy to be more precise than this, but unnecessary for the argument. On the other hand, maybe it's a nicer argument to say that $frac{1}{(q^7;q^7)_infty}$ is the generating function for the partition numbers inflated by a factor of seven, so that $$[q^{7n+7}]frac{q^{2}((q;q)^{3}_{infty})^{2}}{(q^{7};q^{7})_{infty}} = [q^{7n+7}](q^{2}((q;q)^{3}_{infty})^{2})sum_{i=0}^infty P(i)q^{7i} = sum_{i=0}^{n+1} P(i)[q^{7(n-i+1)}](q^{2}((q;q)^{3}_{infty})^{2})$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3027196%2framanujan-congruence-mod-7%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
I think the bit you're missing is $$frac{1}{1 - z} = 1 + z + z^2 + cdots$$
Therefore $$frac{1}{(q^7;q^7)_infty} = prod_{k=1}^infty sum_{j=0}^infty q^{7jk}$$
which clearly only has non-zero coefficients for powers of seven.
Thus the coefficient $[q^{7n+7}]frac{q^{2}((q;q)^{3}_{infty})^{2}}{(q^{7};q^{7})_{infty}}$ is some integer-weighted sum* of coefficients $[q^{7i}]q^{2}((q;q)^{3}_{infty})^{2}$.
* It is, of course, quite easy to be more precise than this, but unnecessary for the argument. On the other hand, maybe it's a nicer argument to say that $frac{1}{(q^7;q^7)_infty}$ is the generating function for the partition numbers inflated by a factor of seven, so that $$[q^{7n+7}]frac{q^{2}((q;q)^{3}_{infty})^{2}}{(q^{7};q^{7})_{infty}} = [q^{7n+7}](q^{2}((q;q)^{3}_{infty})^{2})sum_{i=0}^infty P(i)q^{7i} = sum_{i=0}^{n+1} P(i)[q^{7(n-i+1)}](q^{2}((q;q)^{3}_{infty})^{2})$$
$endgroup$
add a comment |
$begingroup$
I think the bit you're missing is $$frac{1}{1 - z} = 1 + z + z^2 + cdots$$
Therefore $$frac{1}{(q^7;q^7)_infty} = prod_{k=1}^infty sum_{j=0}^infty q^{7jk}$$
which clearly only has non-zero coefficients for powers of seven.
Thus the coefficient $[q^{7n+7}]frac{q^{2}((q;q)^{3}_{infty})^{2}}{(q^{7};q^{7})_{infty}}$ is some integer-weighted sum* of coefficients $[q^{7i}]q^{2}((q;q)^{3}_{infty})^{2}$.
* It is, of course, quite easy to be more precise than this, but unnecessary for the argument. On the other hand, maybe it's a nicer argument to say that $frac{1}{(q^7;q^7)_infty}$ is the generating function for the partition numbers inflated by a factor of seven, so that $$[q^{7n+7}]frac{q^{2}((q;q)^{3}_{infty})^{2}}{(q^{7};q^{7})_{infty}} = [q^{7n+7}](q^{2}((q;q)^{3}_{infty})^{2})sum_{i=0}^infty P(i)q^{7i} = sum_{i=0}^{n+1} P(i)[q^{7(n-i+1)}](q^{2}((q;q)^{3}_{infty})^{2})$$
$endgroup$
add a comment |
$begingroup$
I think the bit you're missing is $$frac{1}{1 - z} = 1 + z + z^2 + cdots$$
Therefore $$frac{1}{(q^7;q^7)_infty} = prod_{k=1}^infty sum_{j=0}^infty q^{7jk}$$
which clearly only has non-zero coefficients for powers of seven.
Thus the coefficient $[q^{7n+7}]frac{q^{2}((q;q)^{3}_{infty})^{2}}{(q^{7};q^{7})_{infty}}$ is some integer-weighted sum* of coefficients $[q^{7i}]q^{2}((q;q)^{3}_{infty})^{2}$.
* It is, of course, quite easy to be more precise than this, but unnecessary for the argument. On the other hand, maybe it's a nicer argument to say that $frac{1}{(q^7;q^7)_infty}$ is the generating function for the partition numbers inflated by a factor of seven, so that $$[q^{7n+7}]frac{q^{2}((q;q)^{3}_{infty})^{2}}{(q^{7};q^{7})_{infty}} = [q^{7n+7}](q^{2}((q;q)^{3}_{infty})^{2})sum_{i=0}^infty P(i)q^{7i} = sum_{i=0}^{n+1} P(i)[q^{7(n-i+1)}](q^{2}((q;q)^{3}_{infty})^{2})$$
$endgroup$
I think the bit you're missing is $$frac{1}{1 - z} = 1 + z + z^2 + cdots$$
Therefore $$frac{1}{(q^7;q^7)_infty} = prod_{k=1}^infty sum_{j=0}^infty q^{7jk}$$
which clearly only has non-zero coefficients for powers of seven.
Thus the coefficient $[q^{7n+7}]frac{q^{2}((q;q)^{3}_{infty})^{2}}{(q^{7};q^{7})_{infty}}$ is some integer-weighted sum* of coefficients $[q^{7i}]q^{2}((q;q)^{3}_{infty})^{2}$.
* It is, of course, quite easy to be more precise than this, but unnecessary for the argument. On the other hand, maybe it's a nicer argument to say that $frac{1}{(q^7;q^7)_infty}$ is the generating function for the partition numbers inflated by a factor of seven, so that $$[q^{7n+7}]frac{q^{2}((q;q)^{3}_{infty})^{2}}{(q^{7};q^{7})_{infty}} = [q^{7n+7}](q^{2}((q;q)^{3}_{infty})^{2})sum_{i=0}^infty P(i)q^{7i} = sum_{i=0}^{n+1} P(i)[q^{7(n-i+1)}](q^{2}((q;q)^{3}_{infty})^{2})$$
edited Dec 5 '18 at 17:20
answered Dec 5 '18 at 17:14
Peter TaylorPeter Taylor
9,09712342
9,09712342
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3027196%2framanujan-congruence-mod-7%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
To be clear: you're satisfied with your proof that $$[q^{7n+7}]q^{2}((q;q)^{3}_{infty})^{2} equiv 0 pmod 7$$ and you want to show that $$[q^{7n+7}]frac{q^{2}((q;q)^{3}_{infty})^{2}}{(q^{7};q^{7})_{infty}} equiv 0 pmod 7$$?
$endgroup$
– Peter Taylor
Dec 5 '18 at 16:33
$begingroup$
Of course but I do not know how to finish it!
$endgroup$
– Liddo
Dec 5 '18 at 16:53
$begingroup$
It is of interest to know that Ramanujan proved this congruence using the same method. He provided another more complicated proof by giving a closed form for $sum_{n=0}^{infty} p(7n+5)q^n$. See this post for more details.
$endgroup$
– Paramanand Singh
Dec 6 '18 at 17:13