Marginalizing over product of same probability distribution
$begingroup$
Let's say I have a probability distribution defined as a product of probability distributions:
begin{equation}tag{1}label{1}
p(boldsymbolmu)=
prod_{r=1}^{R}prod_{c=1}^{C}p(mu_{r-1,c})p(mu_{r,c})p(mu_{r+1,c})p(mu_{r,c+1})p(mu_{r,c-1})
end{equation}
where $boldsymbolmu$ is a matrix with dimensions $R, C$.
Let's say I want to marginalize out all variables except two particular ones:
$$
sum_{boldsymbolmu notin {mu_{alpha, beta}, mu_{alpha, beta+1} }} p(boldsymbolmu) = p(mu_{alpha, beta}, mu_{alpha, beta+1})
$$
I want to perform this marginalization on (ref{1}). How do I do that? Let's for example say that $R = 1$ and $C = 2$ and we want $p(mu_{2,1}, mu_{2,2})$. Trying to marginalize, we get:
$$
p(mu_{2,1}, mu_{2,2}) = sum_{mu_{0,1}} sum_{mu_{1,1}} sum_{mu_{1,0}} sum_{mu_{1,2}} sum_{mu_{0,2}} p(mu_{0,1})p(mu_{1,1})p(mu_{2,1})p(mu_{1,0})p(mu_{1,2})p(mu_{0,2})p(mu_{1,2})p(mu_{2,2})p(mu_{1,1})p(mu_{1,2})
$$
Three of the variables are easy to eliminate since they only show up once in the product. We're then left with:
$$
sum_{mu_{1,1}} sum_{mu_{1,2}} p(mu_{1,1}) p(mu_{1,1}) p(mu_{1,2}) p(mu_{1,2}) p(mu_{1,2}) p(mu_{2,1}) p(mu_{2,2})
$$
where there are many duplicates of the distributions we want to marginalize out. Is it correct to simply write
$$
p(mu_{2,1}, mu_{2,2}) = p(mu_{2,1}) p(mu_{2,2})?
$$
And why?
probability-theory
$endgroup$
add a comment |
$begingroup$
Let's say I have a probability distribution defined as a product of probability distributions:
begin{equation}tag{1}label{1}
p(boldsymbolmu)=
prod_{r=1}^{R}prod_{c=1}^{C}p(mu_{r-1,c})p(mu_{r,c})p(mu_{r+1,c})p(mu_{r,c+1})p(mu_{r,c-1})
end{equation}
where $boldsymbolmu$ is a matrix with dimensions $R, C$.
Let's say I want to marginalize out all variables except two particular ones:
$$
sum_{boldsymbolmu notin {mu_{alpha, beta}, mu_{alpha, beta+1} }} p(boldsymbolmu) = p(mu_{alpha, beta}, mu_{alpha, beta+1})
$$
I want to perform this marginalization on (ref{1}). How do I do that? Let's for example say that $R = 1$ and $C = 2$ and we want $p(mu_{2,1}, mu_{2,2})$. Trying to marginalize, we get:
$$
p(mu_{2,1}, mu_{2,2}) = sum_{mu_{0,1}} sum_{mu_{1,1}} sum_{mu_{1,0}} sum_{mu_{1,2}} sum_{mu_{0,2}} p(mu_{0,1})p(mu_{1,1})p(mu_{2,1})p(mu_{1,0})p(mu_{1,2})p(mu_{0,2})p(mu_{1,2})p(mu_{2,2})p(mu_{1,1})p(mu_{1,2})
$$
Three of the variables are easy to eliminate since they only show up once in the product. We're then left with:
$$
sum_{mu_{1,1}} sum_{mu_{1,2}} p(mu_{1,1}) p(mu_{1,1}) p(mu_{1,2}) p(mu_{1,2}) p(mu_{1,2}) p(mu_{2,1}) p(mu_{2,2})
$$
where there are many duplicates of the distributions we want to marginalize out. Is it correct to simply write
$$
p(mu_{2,1}, mu_{2,2}) = p(mu_{2,1}) p(mu_{2,2})?
$$
And why?
probability-theory
$endgroup$
add a comment |
$begingroup$
Let's say I have a probability distribution defined as a product of probability distributions:
begin{equation}tag{1}label{1}
p(boldsymbolmu)=
prod_{r=1}^{R}prod_{c=1}^{C}p(mu_{r-1,c})p(mu_{r,c})p(mu_{r+1,c})p(mu_{r,c+1})p(mu_{r,c-1})
end{equation}
where $boldsymbolmu$ is a matrix with dimensions $R, C$.
Let's say I want to marginalize out all variables except two particular ones:
$$
sum_{boldsymbolmu notin {mu_{alpha, beta}, mu_{alpha, beta+1} }} p(boldsymbolmu) = p(mu_{alpha, beta}, mu_{alpha, beta+1})
$$
I want to perform this marginalization on (ref{1}). How do I do that? Let's for example say that $R = 1$ and $C = 2$ and we want $p(mu_{2,1}, mu_{2,2})$. Trying to marginalize, we get:
$$
p(mu_{2,1}, mu_{2,2}) = sum_{mu_{0,1}} sum_{mu_{1,1}} sum_{mu_{1,0}} sum_{mu_{1,2}} sum_{mu_{0,2}} p(mu_{0,1})p(mu_{1,1})p(mu_{2,1})p(mu_{1,0})p(mu_{1,2})p(mu_{0,2})p(mu_{1,2})p(mu_{2,2})p(mu_{1,1})p(mu_{1,2})
$$
Three of the variables are easy to eliminate since they only show up once in the product. We're then left with:
$$
sum_{mu_{1,1}} sum_{mu_{1,2}} p(mu_{1,1}) p(mu_{1,1}) p(mu_{1,2}) p(mu_{1,2}) p(mu_{1,2}) p(mu_{2,1}) p(mu_{2,2})
$$
where there are many duplicates of the distributions we want to marginalize out. Is it correct to simply write
$$
p(mu_{2,1}, mu_{2,2}) = p(mu_{2,1}) p(mu_{2,2})?
$$
And why?
probability-theory
$endgroup$
Let's say I have a probability distribution defined as a product of probability distributions:
begin{equation}tag{1}label{1}
p(boldsymbolmu)=
prod_{r=1}^{R}prod_{c=1}^{C}p(mu_{r-1,c})p(mu_{r,c})p(mu_{r+1,c})p(mu_{r,c+1})p(mu_{r,c-1})
end{equation}
where $boldsymbolmu$ is a matrix with dimensions $R, C$.
Let's say I want to marginalize out all variables except two particular ones:
$$
sum_{boldsymbolmu notin {mu_{alpha, beta}, mu_{alpha, beta+1} }} p(boldsymbolmu) = p(mu_{alpha, beta}, mu_{alpha, beta+1})
$$
I want to perform this marginalization on (ref{1}). How do I do that? Let's for example say that $R = 1$ and $C = 2$ and we want $p(mu_{2,1}, mu_{2,2})$. Trying to marginalize, we get:
$$
p(mu_{2,1}, mu_{2,2}) = sum_{mu_{0,1}} sum_{mu_{1,1}} sum_{mu_{1,0}} sum_{mu_{1,2}} sum_{mu_{0,2}} p(mu_{0,1})p(mu_{1,1})p(mu_{2,1})p(mu_{1,0})p(mu_{1,2})p(mu_{0,2})p(mu_{1,2})p(mu_{2,2})p(mu_{1,1})p(mu_{1,2})
$$
Three of the variables are easy to eliminate since they only show up once in the product. We're then left with:
$$
sum_{mu_{1,1}} sum_{mu_{1,2}} p(mu_{1,1}) p(mu_{1,1}) p(mu_{1,2}) p(mu_{1,2}) p(mu_{1,2}) p(mu_{2,1}) p(mu_{2,2})
$$
where there are many duplicates of the distributions we want to marginalize out. Is it correct to simply write
$$
p(mu_{2,1}, mu_{2,2}) = p(mu_{2,1}) p(mu_{2,2})?
$$
And why?
probability-theory
probability-theory
asked Dec 5 '18 at 15:45
SandiSandi
262112
262112
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3027222%2fmarginalizing-over-product-of-same-probability-distribution%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3027222%2fmarginalizing-over-product-of-same-probability-distribution%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown