Infinite series containing positive and negative terms
$begingroup$
Calculation of sum of
$displaystyle 1-frac{1}{5}+frac{1cdot 4}{5cdot 10}-frac{1cdot 4 cdot 7}{5cdot 10 cdot 15}+cdots cdots $
The series is not in arithmetic series or in arithmetic geometric series
I did not understand how to solve such type of problem
help me to solve it plaese
sequences-and-series
$endgroup$
add a comment |
$begingroup$
Calculation of sum of
$displaystyle 1-frac{1}{5}+frac{1cdot 4}{5cdot 10}-frac{1cdot 4 cdot 7}{5cdot 10 cdot 15}+cdots cdots $
The series is not in arithmetic series or in arithmetic geometric series
I did not understand how to solve such type of problem
help me to solve it plaese
sequences-and-series
$endgroup$
$begingroup$
math.stackexchange.com/questions/746388/…
$endgroup$
– lab bhattacharjee
Dec 5 '18 at 15:50
add a comment |
$begingroup$
Calculation of sum of
$displaystyle 1-frac{1}{5}+frac{1cdot 4}{5cdot 10}-frac{1cdot 4 cdot 7}{5cdot 10 cdot 15}+cdots cdots $
The series is not in arithmetic series or in arithmetic geometric series
I did not understand how to solve such type of problem
help me to solve it plaese
sequences-and-series
$endgroup$
Calculation of sum of
$displaystyle 1-frac{1}{5}+frac{1cdot 4}{5cdot 10}-frac{1cdot 4 cdot 7}{5cdot 10 cdot 15}+cdots cdots $
The series is not in arithmetic series or in arithmetic geometric series
I did not understand how to solve such type of problem
help me to solve it plaese
sequences-and-series
sequences-and-series
asked Dec 5 '18 at 15:45
jackyjacky
842615
842615
$begingroup$
math.stackexchange.com/questions/746388/…
$endgroup$
– lab bhattacharjee
Dec 5 '18 at 15:50
add a comment |
$begingroup$
math.stackexchange.com/questions/746388/…
$endgroup$
– lab bhattacharjee
Dec 5 '18 at 15:50
$begingroup$
math.stackexchange.com/questions/746388/…
$endgroup$
– lab bhattacharjee
Dec 5 '18 at 15:50
$begingroup$
math.stackexchange.com/questions/746388/…
$endgroup$
– lab bhattacharjee
Dec 5 '18 at 15:50
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
&bbox[10px,#ffd]{1 - sum_{n = 0}^{infty}pars{-1}^{n},
{prod_{k = 0}^{n}pars{3k + 1} over prod_{k = 0}^{n}pars{5k + 5}}}
\[5mm] = &
1 - sum_{n = 0}^{infty}pars{-1}^{n},
{3^{n + 1}prod_{k = 0}^{n}pars{k + 1/3} over
5^{n + 1}prod_{k = 0}^{n}pars{k + 1}}
\[5mm] = &
1 + sum_{n = 0}^{infty}pars{-,{3 over 5}}^{n + 1},
{pars{1/3}^{overline{n + 1}} over pars{n + 1}!}
\[5mm] = &
1 + sum_{n = 0}^{infty}
{Gammapars{1/3 + n + 1}/Gammapars{1/3} over pars{n + 1}!},
pars{-,{3 over 5}}^{n + 1}
\[5mm] = &
1 + sum_{n = 0}^{infty}
{pars{n + 1/3}! over pars{n + 1}!pars{-2/3}!},
pars{-,{3 over 5}}^{n + 1} =
1 + sum_{n = 0}^{infty}{n + 1/3 choose n + 1}
pars{-,{3 over 5}}^{n + 1}
\[5mm] = &
1 + sum_{n = 0}^{infty}
bracks{{-1/3 choose n + 1}pars{-1}^{n + 1}}
pars{-,{3 over 5}}^{n + 1}
\[5mm] = &
sum_{n = 0}^{infty}
{-1/3 choose n}pars{3 over 5}^{n} = pars{1 + {3 over 5}}^{-1/3} =
bbx{5^{1/3} over 2} approx 0.8550
end{align}
$endgroup$
$begingroup$
cool the passage through binomial (+1)
$endgroup$
– G Cab
Dec 5 '18 at 22:13
$begingroup$
@GCab Thanks. Binomials are always quite fine.
$endgroup$
– Felix Marin
Dec 5 '18 at 22:31
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3027224%2finfinite-series-containing-positive-and-negative-terms%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
&bbox[10px,#ffd]{1 - sum_{n = 0}^{infty}pars{-1}^{n},
{prod_{k = 0}^{n}pars{3k + 1} over prod_{k = 0}^{n}pars{5k + 5}}}
\[5mm] = &
1 - sum_{n = 0}^{infty}pars{-1}^{n},
{3^{n + 1}prod_{k = 0}^{n}pars{k + 1/3} over
5^{n + 1}prod_{k = 0}^{n}pars{k + 1}}
\[5mm] = &
1 + sum_{n = 0}^{infty}pars{-,{3 over 5}}^{n + 1},
{pars{1/3}^{overline{n + 1}} over pars{n + 1}!}
\[5mm] = &
1 + sum_{n = 0}^{infty}
{Gammapars{1/3 + n + 1}/Gammapars{1/3} over pars{n + 1}!},
pars{-,{3 over 5}}^{n + 1}
\[5mm] = &
1 + sum_{n = 0}^{infty}
{pars{n + 1/3}! over pars{n + 1}!pars{-2/3}!},
pars{-,{3 over 5}}^{n + 1} =
1 + sum_{n = 0}^{infty}{n + 1/3 choose n + 1}
pars{-,{3 over 5}}^{n + 1}
\[5mm] = &
1 + sum_{n = 0}^{infty}
bracks{{-1/3 choose n + 1}pars{-1}^{n + 1}}
pars{-,{3 over 5}}^{n + 1}
\[5mm] = &
sum_{n = 0}^{infty}
{-1/3 choose n}pars{3 over 5}^{n} = pars{1 + {3 over 5}}^{-1/3} =
bbx{5^{1/3} over 2} approx 0.8550
end{align}
$endgroup$
$begingroup$
cool the passage through binomial (+1)
$endgroup$
– G Cab
Dec 5 '18 at 22:13
$begingroup$
@GCab Thanks. Binomials are always quite fine.
$endgroup$
– Felix Marin
Dec 5 '18 at 22:31
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
&bbox[10px,#ffd]{1 - sum_{n = 0}^{infty}pars{-1}^{n},
{prod_{k = 0}^{n}pars{3k + 1} over prod_{k = 0}^{n}pars{5k + 5}}}
\[5mm] = &
1 - sum_{n = 0}^{infty}pars{-1}^{n},
{3^{n + 1}prod_{k = 0}^{n}pars{k + 1/3} over
5^{n + 1}prod_{k = 0}^{n}pars{k + 1}}
\[5mm] = &
1 + sum_{n = 0}^{infty}pars{-,{3 over 5}}^{n + 1},
{pars{1/3}^{overline{n + 1}} over pars{n + 1}!}
\[5mm] = &
1 + sum_{n = 0}^{infty}
{Gammapars{1/3 + n + 1}/Gammapars{1/3} over pars{n + 1}!},
pars{-,{3 over 5}}^{n + 1}
\[5mm] = &
1 + sum_{n = 0}^{infty}
{pars{n + 1/3}! over pars{n + 1}!pars{-2/3}!},
pars{-,{3 over 5}}^{n + 1} =
1 + sum_{n = 0}^{infty}{n + 1/3 choose n + 1}
pars{-,{3 over 5}}^{n + 1}
\[5mm] = &
1 + sum_{n = 0}^{infty}
bracks{{-1/3 choose n + 1}pars{-1}^{n + 1}}
pars{-,{3 over 5}}^{n + 1}
\[5mm] = &
sum_{n = 0}^{infty}
{-1/3 choose n}pars{3 over 5}^{n} = pars{1 + {3 over 5}}^{-1/3} =
bbx{5^{1/3} over 2} approx 0.8550
end{align}
$endgroup$
$begingroup$
cool the passage through binomial (+1)
$endgroup$
– G Cab
Dec 5 '18 at 22:13
$begingroup$
@GCab Thanks. Binomials are always quite fine.
$endgroup$
– Felix Marin
Dec 5 '18 at 22:31
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
&bbox[10px,#ffd]{1 - sum_{n = 0}^{infty}pars{-1}^{n},
{prod_{k = 0}^{n}pars{3k + 1} over prod_{k = 0}^{n}pars{5k + 5}}}
\[5mm] = &
1 - sum_{n = 0}^{infty}pars{-1}^{n},
{3^{n + 1}prod_{k = 0}^{n}pars{k + 1/3} over
5^{n + 1}prod_{k = 0}^{n}pars{k + 1}}
\[5mm] = &
1 + sum_{n = 0}^{infty}pars{-,{3 over 5}}^{n + 1},
{pars{1/3}^{overline{n + 1}} over pars{n + 1}!}
\[5mm] = &
1 + sum_{n = 0}^{infty}
{Gammapars{1/3 + n + 1}/Gammapars{1/3} over pars{n + 1}!},
pars{-,{3 over 5}}^{n + 1}
\[5mm] = &
1 + sum_{n = 0}^{infty}
{pars{n + 1/3}! over pars{n + 1}!pars{-2/3}!},
pars{-,{3 over 5}}^{n + 1} =
1 + sum_{n = 0}^{infty}{n + 1/3 choose n + 1}
pars{-,{3 over 5}}^{n + 1}
\[5mm] = &
1 + sum_{n = 0}^{infty}
bracks{{-1/3 choose n + 1}pars{-1}^{n + 1}}
pars{-,{3 over 5}}^{n + 1}
\[5mm] = &
sum_{n = 0}^{infty}
{-1/3 choose n}pars{3 over 5}^{n} = pars{1 + {3 over 5}}^{-1/3} =
bbx{5^{1/3} over 2} approx 0.8550
end{align}
$endgroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
&bbox[10px,#ffd]{1 - sum_{n = 0}^{infty}pars{-1}^{n},
{prod_{k = 0}^{n}pars{3k + 1} over prod_{k = 0}^{n}pars{5k + 5}}}
\[5mm] = &
1 - sum_{n = 0}^{infty}pars{-1}^{n},
{3^{n + 1}prod_{k = 0}^{n}pars{k + 1/3} over
5^{n + 1}prod_{k = 0}^{n}pars{k + 1}}
\[5mm] = &
1 + sum_{n = 0}^{infty}pars{-,{3 over 5}}^{n + 1},
{pars{1/3}^{overline{n + 1}} over pars{n + 1}!}
\[5mm] = &
1 + sum_{n = 0}^{infty}
{Gammapars{1/3 + n + 1}/Gammapars{1/3} over pars{n + 1}!},
pars{-,{3 over 5}}^{n + 1}
\[5mm] = &
1 + sum_{n = 0}^{infty}
{pars{n + 1/3}! over pars{n + 1}!pars{-2/3}!},
pars{-,{3 over 5}}^{n + 1} =
1 + sum_{n = 0}^{infty}{n + 1/3 choose n + 1}
pars{-,{3 over 5}}^{n + 1}
\[5mm] = &
1 + sum_{n = 0}^{infty}
bracks{{-1/3 choose n + 1}pars{-1}^{n + 1}}
pars{-,{3 over 5}}^{n + 1}
\[5mm] = &
sum_{n = 0}^{infty}
{-1/3 choose n}pars{3 over 5}^{n} = pars{1 + {3 over 5}}^{-1/3} =
bbx{5^{1/3} over 2} approx 0.8550
end{align}
answered Dec 5 '18 at 21:57
Felix MarinFelix Marin
68.2k7109144
68.2k7109144
$begingroup$
cool the passage through binomial (+1)
$endgroup$
– G Cab
Dec 5 '18 at 22:13
$begingroup$
@GCab Thanks. Binomials are always quite fine.
$endgroup$
– Felix Marin
Dec 5 '18 at 22:31
add a comment |
$begingroup$
cool the passage through binomial (+1)
$endgroup$
– G Cab
Dec 5 '18 at 22:13
$begingroup$
@GCab Thanks. Binomials are always quite fine.
$endgroup$
– Felix Marin
Dec 5 '18 at 22:31
$begingroup$
cool the passage through binomial (+1)
$endgroup$
– G Cab
Dec 5 '18 at 22:13
$begingroup$
cool the passage through binomial (+1)
$endgroup$
– G Cab
Dec 5 '18 at 22:13
$begingroup$
@GCab Thanks. Binomials are always quite fine.
$endgroup$
– Felix Marin
Dec 5 '18 at 22:31
$begingroup$
@GCab Thanks. Binomials are always quite fine.
$endgroup$
– Felix Marin
Dec 5 '18 at 22:31
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3027224%2finfinite-series-containing-positive-and-negative-terms%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
math.stackexchange.com/questions/746388/…
$endgroup$
– lab bhattacharjee
Dec 5 '18 at 15:50