Finding the solution to a second order ordinary differential equation where one solution is already known
Multi tool use
$begingroup$
The following problem is from the book "Introduction to Ordinary Differential Equations" by
Shepley L. Ross. Below is my solution to the problem, which I believe is wrong. In any case,
it does not match the answer in the book. I am hoping somebody here can tell me where I went wrong.
Thanks,
Bob
Problem:
Given that $y = e^{2x}$ is a solution of
$$ (2x+1)y'' - 4(x+1)y' + 4y = 0$$
find a linearly independent solution by reducing the order. Write the general solution.
Answer:
Let $f(x)$ represent the solution we have.
begin{eqnarray*}
f(x) &=& e^{2x} \
y &=& f(x) v = e^{2x}v \
y' &=& e^{2x} v' + 2ve^{2x} \
y'' &=& e^{2x} v'' + 2e^{2x}v' + 4ve^{2x} + 2v'e^{2x} \
y'' &=& e^{2x} v'' + 4e^{2x}v' + 4ve^{2x} \
end{eqnarray*}
begin{eqnarray*}
(2x+1)(e^{2x} v'' + 4e^{2x}v' + 4ve^{2x}) - 4(x+1)(e^{2x} v' + 2ve^{2x}) + 4e^{2x}v &=& 0 \
(2x+1)( v'' + 4v' + 4v) - 4(x+1)( v' + 2v) + 4v &=& 0 \
(2x+1)( v'' + 4v' + 4v) - 4(x+1)( v') - 4(x+1)(2v) + 4v &=& 0 \
(2x+1)( v'' + 4v' + 4v) - 4(x+1)( v') - 8xv - 8v + 4v &=& 0 \
(2x+1)( v'' + 4v' + 4v) - 4(x+1)( v') - 8xv - 4v &=& 0 \
(2x+1)(v'' + 4v' + 4v) + (2x+1)(4v)- 4(x+1)( v') - 8xv - 4v &=& 0 \
(2x+1)( v'' + 4v' + 4v) - 4(x+1)( v') - 8xv - 4v &=& 0 \
end{eqnarray*}
begin{eqnarray*}
(2x+1)( v'' + 4v' ) - 4(x+1)( v') &=& 0 \
(2x+1)( v'' + 4v' ) - 4x( v') - 4 v' &=& 0 \
(2x+1)( v'') + (2x+1)(4v' ) - 4x( v') - 4 v' &=& 0 \
(2x+1)( v'') + 4xv' &=& 0 \
(2x+1)v''+ 4xv' &=& 0 \
end{eqnarray*}
Let $w = frac{dv}{dx}$.
begin{eqnarray*}
(2x+1)frac{dw}{dx} + 4xw &=& 0 \
frac{dw}{w} + frac{dx}{2x+1} &=& 0 \
int frac{dw}{w} ,, dx + int frac{dx}{2x+1} ,, dx &=& int 0 ,, dx \
end{eqnarray*}
Now to perform this integration:
$$ int frac{dx}{2x+1} ,, dx $$
we use the substitution $u_1 = 2x + 1$ which gives $du_1 = dx$.
begin{eqnarray*}
2x &=& u_1 - 1 \
4x &=& 2u_1 - 2 \
int frac{dx}{2x+1} ,, dx &=& int frac{2u_1-2}{u_1} ,, du_1 =
int 2 ,, du_1 - int frac{2}{u_1} ,, du_1 \
int frac{dx}{2x+1} ,, dx &=& 2(2x+1) - 2 ln{|2x+1|} + C_1 \
end{eqnarray*}
begin{eqnarray*}
ln{|w|} + 2(2x+1) - 2 ln{|2x+1|} + C_1 &=& 0 \
ln{|w|} + ln{e^{(4x+2)}} - 2 ln{|2x+1|} + C_1 &=& 0 \
ln{bigg|frac{we^{(4x+2)}}{(2x+1)^2}bigg|} &=& -C_1 \
frac{we^{(4x+2)}}{(2x+1)^2} &=& C_2 \
end{eqnarray*}
begin{eqnarray*}
w &=& frac{dv}{dx} = C_2 left( frac{(2x+1)^2}{e^{(4x+2)}} right) =
C_2 left( frac{(2x+1)^2}{e^{2x+1}e^{2x+1}} right) \
dv &=& frac{C_2(2x+1)^2}{e^{2x+1}e^{2x+1}} , dx \
end{eqnarray*}
Using an online integral calcuator, we find:
$$ int frac{(2x+1)^2}{e^{2x+1}e^{2x+1}} ,, dx = -frac{(8x^2+12+5)e^{-4x-2}}{8} + C_3 $$
begin{eqnarray*}
v &=& -frac{C_2(8x^2+12+5)e^{-4x-2}}{8} + C_3 \
v &=& e^{-2x}y \
e^{-2x}y &=& -frac{C_2(8x^2+12+5)e^{-4x-2}}{8} + C_3 \
end{eqnarray*}
However, the book's answer is:
$$ y = c_1e^{2x} + c_2(x+1)$$
ordinary-differential-equations
$endgroup$
add a comment |
$begingroup$
The following problem is from the book "Introduction to Ordinary Differential Equations" by
Shepley L. Ross. Below is my solution to the problem, which I believe is wrong. In any case,
it does not match the answer in the book. I am hoping somebody here can tell me where I went wrong.
Thanks,
Bob
Problem:
Given that $y = e^{2x}$ is a solution of
$$ (2x+1)y'' - 4(x+1)y' + 4y = 0$$
find a linearly independent solution by reducing the order. Write the general solution.
Answer:
Let $f(x)$ represent the solution we have.
begin{eqnarray*}
f(x) &=& e^{2x} \
y &=& f(x) v = e^{2x}v \
y' &=& e^{2x} v' + 2ve^{2x} \
y'' &=& e^{2x} v'' + 2e^{2x}v' + 4ve^{2x} + 2v'e^{2x} \
y'' &=& e^{2x} v'' + 4e^{2x}v' + 4ve^{2x} \
end{eqnarray*}
begin{eqnarray*}
(2x+1)(e^{2x} v'' + 4e^{2x}v' + 4ve^{2x}) - 4(x+1)(e^{2x} v' + 2ve^{2x}) + 4e^{2x}v &=& 0 \
(2x+1)( v'' + 4v' + 4v) - 4(x+1)( v' + 2v) + 4v &=& 0 \
(2x+1)( v'' + 4v' + 4v) - 4(x+1)( v') - 4(x+1)(2v) + 4v &=& 0 \
(2x+1)( v'' + 4v' + 4v) - 4(x+1)( v') - 8xv - 8v + 4v &=& 0 \
(2x+1)( v'' + 4v' + 4v) - 4(x+1)( v') - 8xv - 4v &=& 0 \
(2x+1)(v'' + 4v' + 4v) + (2x+1)(4v)- 4(x+1)( v') - 8xv - 4v &=& 0 \
(2x+1)( v'' + 4v' + 4v) - 4(x+1)( v') - 8xv - 4v &=& 0 \
end{eqnarray*}
begin{eqnarray*}
(2x+1)( v'' + 4v' ) - 4(x+1)( v') &=& 0 \
(2x+1)( v'' + 4v' ) - 4x( v') - 4 v' &=& 0 \
(2x+1)( v'') + (2x+1)(4v' ) - 4x( v') - 4 v' &=& 0 \
(2x+1)( v'') + 4xv' &=& 0 \
(2x+1)v''+ 4xv' &=& 0 \
end{eqnarray*}
Let $w = frac{dv}{dx}$.
begin{eqnarray*}
(2x+1)frac{dw}{dx} + 4xw &=& 0 \
frac{dw}{w} + frac{dx}{2x+1} &=& 0 \
int frac{dw}{w} ,, dx + int frac{dx}{2x+1} ,, dx &=& int 0 ,, dx \
end{eqnarray*}
Now to perform this integration:
$$ int frac{dx}{2x+1} ,, dx $$
we use the substitution $u_1 = 2x + 1$ which gives $du_1 = dx$.
begin{eqnarray*}
2x &=& u_1 - 1 \
4x &=& 2u_1 - 2 \
int frac{dx}{2x+1} ,, dx &=& int frac{2u_1-2}{u_1} ,, du_1 =
int 2 ,, du_1 - int frac{2}{u_1} ,, du_1 \
int frac{dx}{2x+1} ,, dx &=& 2(2x+1) - 2 ln{|2x+1|} + C_1 \
end{eqnarray*}
begin{eqnarray*}
ln{|w|} + 2(2x+1) - 2 ln{|2x+1|} + C_1 &=& 0 \
ln{|w|} + ln{e^{(4x+2)}} - 2 ln{|2x+1|} + C_1 &=& 0 \
ln{bigg|frac{we^{(4x+2)}}{(2x+1)^2}bigg|} &=& -C_1 \
frac{we^{(4x+2)}}{(2x+1)^2} &=& C_2 \
end{eqnarray*}
begin{eqnarray*}
w &=& frac{dv}{dx} = C_2 left( frac{(2x+1)^2}{e^{(4x+2)}} right) =
C_2 left( frac{(2x+1)^2}{e^{2x+1}e^{2x+1}} right) \
dv &=& frac{C_2(2x+1)^2}{e^{2x+1}e^{2x+1}} , dx \
end{eqnarray*}
Using an online integral calcuator, we find:
$$ int frac{(2x+1)^2}{e^{2x+1}e^{2x+1}} ,, dx = -frac{(8x^2+12+5)e^{-4x-2}}{8} + C_3 $$
begin{eqnarray*}
v &=& -frac{C_2(8x^2+12+5)e^{-4x-2}}{8} + C_3 \
v &=& e^{-2x}y \
e^{-2x}y &=& -frac{C_2(8x^2+12+5)e^{-4x-2}}{8} + C_3 \
end{eqnarray*}
However, the book's answer is:
$$ y = c_1e^{2x} + c_2(x+1)$$
ordinary-differential-equations
$endgroup$
add a comment |
$begingroup$
The following problem is from the book "Introduction to Ordinary Differential Equations" by
Shepley L. Ross. Below is my solution to the problem, which I believe is wrong. In any case,
it does not match the answer in the book. I am hoping somebody here can tell me where I went wrong.
Thanks,
Bob
Problem:
Given that $y = e^{2x}$ is a solution of
$$ (2x+1)y'' - 4(x+1)y' + 4y = 0$$
find a linearly independent solution by reducing the order. Write the general solution.
Answer:
Let $f(x)$ represent the solution we have.
begin{eqnarray*}
f(x) &=& e^{2x} \
y &=& f(x) v = e^{2x}v \
y' &=& e^{2x} v' + 2ve^{2x} \
y'' &=& e^{2x} v'' + 2e^{2x}v' + 4ve^{2x} + 2v'e^{2x} \
y'' &=& e^{2x} v'' + 4e^{2x}v' + 4ve^{2x} \
end{eqnarray*}
begin{eqnarray*}
(2x+1)(e^{2x} v'' + 4e^{2x}v' + 4ve^{2x}) - 4(x+1)(e^{2x} v' + 2ve^{2x}) + 4e^{2x}v &=& 0 \
(2x+1)( v'' + 4v' + 4v) - 4(x+1)( v' + 2v) + 4v &=& 0 \
(2x+1)( v'' + 4v' + 4v) - 4(x+1)( v') - 4(x+1)(2v) + 4v &=& 0 \
(2x+1)( v'' + 4v' + 4v) - 4(x+1)( v') - 8xv - 8v + 4v &=& 0 \
(2x+1)( v'' + 4v' + 4v) - 4(x+1)( v') - 8xv - 4v &=& 0 \
(2x+1)(v'' + 4v' + 4v) + (2x+1)(4v)- 4(x+1)( v') - 8xv - 4v &=& 0 \
(2x+1)( v'' + 4v' + 4v) - 4(x+1)( v') - 8xv - 4v &=& 0 \
end{eqnarray*}
begin{eqnarray*}
(2x+1)( v'' + 4v' ) - 4(x+1)( v') &=& 0 \
(2x+1)( v'' + 4v' ) - 4x( v') - 4 v' &=& 0 \
(2x+1)( v'') + (2x+1)(4v' ) - 4x( v') - 4 v' &=& 0 \
(2x+1)( v'') + 4xv' &=& 0 \
(2x+1)v''+ 4xv' &=& 0 \
end{eqnarray*}
Let $w = frac{dv}{dx}$.
begin{eqnarray*}
(2x+1)frac{dw}{dx} + 4xw &=& 0 \
frac{dw}{w} + frac{dx}{2x+1} &=& 0 \
int frac{dw}{w} ,, dx + int frac{dx}{2x+1} ,, dx &=& int 0 ,, dx \
end{eqnarray*}
Now to perform this integration:
$$ int frac{dx}{2x+1} ,, dx $$
we use the substitution $u_1 = 2x + 1$ which gives $du_1 = dx$.
begin{eqnarray*}
2x &=& u_1 - 1 \
4x &=& 2u_1 - 2 \
int frac{dx}{2x+1} ,, dx &=& int frac{2u_1-2}{u_1} ,, du_1 =
int 2 ,, du_1 - int frac{2}{u_1} ,, du_1 \
int frac{dx}{2x+1} ,, dx &=& 2(2x+1) - 2 ln{|2x+1|} + C_1 \
end{eqnarray*}
begin{eqnarray*}
ln{|w|} + 2(2x+1) - 2 ln{|2x+1|} + C_1 &=& 0 \
ln{|w|} + ln{e^{(4x+2)}} - 2 ln{|2x+1|} + C_1 &=& 0 \
ln{bigg|frac{we^{(4x+2)}}{(2x+1)^2}bigg|} &=& -C_1 \
frac{we^{(4x+2)}}{(2x+1)^2} &=& C_2 \
end{eqnarray*}
begin{eqnarray*}
w &=& frac{dv}{dx} = C_2 left( frac{(2x+1)^2}{e^{(4x+2)}} right) =
C_2 left( frac{(2x+1)^2}{e^{2x+1}e^{2x+1}} right) \
dv &=& frac{C_2(2x+1)^2}{e^{2x+1}e^{2x+1}} , dx \
end{eqnarray*}
Using an online integral calcuator, we find:
$$ int frac{(2x+1)^2}{e^{2x+1}e^{2x+1}} ,, dx = -frac{(8x^2+12+5)e^{-4x-2}}{8} + C_3 $$
begin{eqnarray*}
v &=& -frac{C_2(8x^2+12+5)e^{-4x-2}}{8} + C_3 \
v &=& e^{-2x}y \
e^{-2x}y &=& -frac{C_2(8x^2+12+5)e^{-4x-2}}{8} + C_3 \
end{eqnarray*}
However, the book's answer is:
$$ y = c_1e^{2x} + c_2(x+1)$$
ordinary-differential-equations
$endgroup$
The following problem is from the book "Introduction to Ordinary Differential Equations" by
Shepley L. Ross. Below is my solution to the problem, which I believe is wrong. In any case,
it does not match the answer in the book. I am hoping somebody here can tell me where I went wrong.
Thanks,
Bob
Problem:
Given that $y = e^{2x}$ is a solution of
$$ (2x+1)y'' - 4(x+1)y' + 4y = 0$$
find a linearly independent solution by reducing the order. Write the general solution.
Answer:
Let $f(x)$ represent the solution we have.
begin{eqnarray*}
f(x) &=& e^{2x} \
y &=& f(x) v = e^{2x}v \
y' &=& e^{2x} v' + 2ve^{2x} \
y'' &=& e^{2x} v'' + 2e^{2x}v' + 4ve^{2x} + 2v'e^{2x} \
y'' &=& e^{2x} v'' + 4e^{2x}v' + 4ve^{2x} \
end{eqnarray*}
begin{eqnarray*}
(2x+1)(e^{2x} v'' + 4e^{2x}v' + 4ve^{2x}) - 4(x+1)(e^{2x} v' + 2ve^{2x}) + 4e^{2x}v &=& 0 \
(2x+1)( v'' + 4v' + 4v) - 4(x+1)( v' + 2v) + 4v &=& 0 \
(2x+1)( v'' + 4v' + 4v) - 4(x+1)( v') - 4(x+1)(2v) + 4v &=& 0 \
(2x+1)( v'' + 4v' + 4v) - 4(x+1)( v') - 8xv - 8v + 4v &=& 0 \
(2x+1)( v'' + 4v' + 4v) - 4(x+1)( v') - 8xv - 4v &=& 0 \
(2x+1)(v'' + 4v' + 4v) + (2x+1)(4v)- 4(x+1)( v') - 8xv - 4v &=& 0 \
(2x+1)( v'' + 4v' + 4v) - 4(x+1)( v') - 8xv - 4v &=& 0 \
end{eqnarray*}
begin{eqnarray*}
(2x+1)( v'' + 4v' ) - 4(x+1)( v') &=& 0 \
(2x+1)( v'' + 4v' ) - 4x( v') - 4 v' &=& 0 \
(2x+1)( v'') + (2x+1)(4v' ) - 4x( v') - 4 v' &=& 0 \
(2x+1)( v'') + 4xv' &=& 0 \
(2x+1)v''+ 4xv' &=& 0 \
end{eqnarray*}
Let $w = frac{dv}{dx}$.
begin{eqnarray*}
(2x+1)frac{dw}{dx} + 4xw &=& 0 \
frac{dw}{w} + frac{dx}{2x+1} &=& 0 \
int frac{dw}{w} ,, dx + int frac{dx}{2x+1} ,, dx &=& int 0 ,, dx \
end{eqnarray*}
Now to perform this integration:
$$ int frac{dx}{2x+1} ,, dx $$
we use the substitution $u_1 = 2x + 1$ which gives $du_1 = dx$.
begin{eqnarray*}
2x &=& u_1 - 1 \
4x &=& 2u_1 - 2 \
int frac{dx}{2x+1} ,, dx &=& int frac{2u_1-2}{u_1} ,, du_1 =
int 2 ,, du_1 - int frac{2}{u_1} ,, du_1 \
int frac{dx}{2x+1} ,, dx &=& 2(2x+1) - 2 ln{|2x+1|} + C_1 \
end{eqnarray*}
begin{eqnarray*}
ln{|w|} + 2(2x+1) - 2 ln{|2x+1|} + C_1 &=& 0 \
ln{|w|} + ln{e^{(4x+2)}} - 2 ln{|2x+1|} + C_1 &=& 0 \
ln{bigg|frac{we^{(4x+2)}}{(2x+1)^2}bigg|} &=& -C_1 \
frac{we^{(4x+2)}}{(2x+1)^2} &=& C_2 \
end{eqnarray*}
begin{eqnarray*}
w &=& frac{dv}{dx} = C_2 left( frac{(2x+1)^2}{e^{(4x+2)}} right) =
C_2 left( frac{(2x+1)^2}{e^{2x+1}e^{2x+1}} right) \
dv &=& frac{C_2(2x+1)^2}{e^{2x+1}e^{2x+1}} , dx \
end{eqnarray*}
Using an online integral calcuator, we find:
$$ int frac{(2x+1)^2}{e^{2x+1}e^{2x+1}} ,, dx = -frac{(8x^2+12+5)e^{-4x-2}}{8} + C_3 $$
begin{eqnarray*}
v &=& -frac{C_2(8x^2+12+5)e^{-4x-2}}{8} + C_3 \
v &=& e^{-2x}y \
e^{-2x}y &=& -frac{C_2(8x^2+12+5)e^{-4x-2}}{8} + C_3 \
end{eqnarray*}
However, the book's answer is:
$$ y = c_1e^{2x} + c_2(x+1)$$
ordinary-differential-equations
ordinary-differential-equations
edited Dec 10 '18 at 12:14
Bob
asked Dec 9 '18 at 23:09
BobBob
938515
938515
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
At the point
$$(2x+1)frac{dw}{dx} + 4xw = 0
$$
you missed to transfer the factor $4x$ to the next step. It should be
$$
frac{dw}{w} + frac{4x,dx}{2x+1} = 0 ,
$$
so that then
begin{align}
frac{dw}{w} + 2,dx -frac{2,dx}{2x+1} &= 0 \
implies
ln|w|+2x-ln|2x+1|&=c,\
v'=w&=Ce^{-2x}(2x+1),\
v&=-Ce^{-2x}(x+1),\
y=e^{2x}v&=-C(x+1)
end{align}
Then, after this factor miraculously re-appears in the discussion of the $u_1$ substitution, you simply replaced $dx$ with $du_1$, while the correct formula is $u_1=2x+1implies du_1=2,dx$.
This reduction by a factor then exponent $2$ then also decreases the complexity in the ensuing computations.
(Btw., the eqnarray
environment was declared obsolete decades ago. Use align
and related environments. Read the official l2tabu
guide in the LaTeX2e documentation.)
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033163%2ffinding-the-solution-to-a-second-order-ordinary-differential-equation-where-one%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
At the point
$$(2x+1)frac{dw}{dx} + 4xw = 0
$$
you missed to transfer the factor $4x$ to the next step. It should be
$$
frac{dw}{w} + frac{4x,dx}{2x+1} = 0 ,
$$
so that then
begin{align}
frac{dw}{w} + 2,dx -frac{2,dx}{2x+1} &= 0 \
implies
ln|w|+2x-ln|2x+1|&=c,\
v'=w&=Ce^{-2x}(2x+1),\
v&=-Ce^{-2x}(x+1),\
y=e^{2x}v&=-C(x+1)
end{align}
Then, after this factor miraculously re-appears in the discussion of the $u_1$ substitution, you simply replaced $dx$ with $du_1$, while the correct formula is $u_1=2x+1implies du_1=2,dx$.
This reduction by a factor then exponent $2$ then also decreases the complexity in the ensuing computations.
(Btw., the eqnarray
environment was declared obsolete decades ago. Use align
and related environments. Read the official l2tabu
guide in the LaTeX2e documentation.)
$endgroup$
add a comment |
$begingroup$
At the point
$$(2x+1)frac{dw}{dx} + 4xw = 0
$$
you missed to transfer the factor $4x$ to the next step. It should be
$$
frac{dw}{w} + frac{4x,dx}{2x+1} = 0 ,
$$
so that then
begin{align}
frac{dw}{w} + 2,dx -frac{2,dx}{2x+1} &= 0 \
implies
ln|w|+2x-ln|2x+1|&=c,\
v'=w&=Ce^{-2x}(2x+1),\
v&=-Ce^{-2x}(x+1),\
y=e^{2x}v&=-C(x+1)
end{align}
Then, after this factor miraculously re-appears in the discussion of the $u_1$ substitution, you simply replaced $dx$ with $du_1$, while the correct formula is $u_1=2x+1implies du_1=2,dx$.
This reduction by a factor then exponent $2$ then also decreases the complexity in the ensuing computations.
(Btw., the eqnarray
environment was declared obsolete decades ago. Use align
and related environments. Read the official l2tabu
guide in the LaTeX2e documentation.)
$endgroup$
add a comment |
$begingroup$
At the point
$$(2x+1)frac{dw}{dx} + 4xw = 0
$$
you missed to transfer the factor $4x$ to the next step. It should be
$$
frac{dw}{w} + frac{4x,dx}{2x+1} = 0 ,
$$
so that then
begin{align}
frac{dw}{w} + 2,dx -frac{2,dx}{2x+1} &= 0 \
implies
ln|w|+2x-ln|2x+1|&=c,\
v'=w&=Ce^{-2x}(2x+1),\
v&=-Ce^{-2x}(x+1),\
y=e^{2x}v&=-C(x+1)
end{align}
Then, after this factor miraculously re-appears in the discussion of the $u_1$ substitution, you simply replaced $dx$ with $du_1$, while the correct formula is $u_1=2x+1implies du_1=2,dx$.
This reduction by a factor then exponent $2$ then also decreases the complexity in the ensuing computations.
(Btw., the eqnarray
environment was declared obsolete decades ago. Use align
and related environments. Read the official l2tabu
guide in the LaTeX2e documentation.)
$endgroup$
At the point
$$(2x+1)frac{dw}{dx} + 4xw = 0
$$
you missed to transfer the factor $4x$ to the next step. It should be
$$
frac{dw}{w} + frac{4x,dx}{2x+1} = 0 ,
$$
so that then
begin{align}
frac{dw}{w} + 2,dx -frac{2,dx}{2x+1} &= 0 \
implies
ln|w|+2x-ln|2x+1|&=c,\
v'=w&=Ce^{-2x}(2x+1),\
v&=-Ce^{-2x}(x+1),\
y=e^{2x}v&=-C(x+1)
end{align}
Then, after this factor miraculously re-appears in the discussion of the $u_1$ substitution, you simply replaced $dx$ with $du_1$, while the correct formula is $u_1=2x+1implies du_1=2,dx$.
This reduction by a factor then exponent $2$ then also decreases the complexity in the ensuing computations.
(Btw., the eqnarray
environment was declared obsolete decades ago. Use align
and related environments. Read the official l2tabu
guide in the LaTeX2e documentation.)
edited Dec 9 '18 at 23:43
answered Dec 9 '18 at 23:18
LutzLLutzL
59.8k42057
59.8k42057
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033163%2ffinding-the-solution-to-a-second-order-ordinary-differential-equation-where-one%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
rxcM,qEjBMMzoFdXnvg0