Convergence of a series involving cosine












3












$begingroup$


Let $x in (0, 2pi)$. Is the series $sum_{n=1}^{infty} frac{cos(n^2x)}{n}$ convergent? My guess is: YES and I would like to use Dirichlet test: however I have troubles proving that the partial sums $cos(x)+cos(4x)+...+cos(n^2x)$ are bounded due to the lack of the simple formula for this sum. Any ideas?










share|cite|improve this question











$endgroup$












  • $begingroup$
    I'm not sure, but I don't think the partial sums are bounded. My guess is that there are some $x$ with annoying continued fraction expansion. However, I think the set of such $x$ is measure $0$.
    $endgroup$
    – mathworker21
    Dec 10 '18 at 0:20










  • $begingroup$
    You could look at the following question first: Is there an x such that $cos(n^2x)>epsilon$ for all n for some epsilon >0. If that is the case (which looks likely to me even though I can‘t imediatly see such an element) you can lower bound that sum by the harmonic sum which is divergent. Therefore for that x the sum would be divergent as well
    $endgroup$
    – Börge
    Dec 10 '18 at 1:00












  • $begingroup$
    At least sometimes it is convergent: take $x=pi$.
    $endgroup$
    – YiFan
    Dec 10 '18 at 1:07










  • $begingroup$
    And sometimes it is divergent: take $x=frac{pi}2$. For odd indeces $n$ the fraction vanishes, for even indeces $n$ it is $frac 1n$.
    $endgroup$
    – Pavel R.
    Dec 10 '18 at 1:11










  • $begingroup$
    It is the Fourier series of an $L^2$ function. Carleson's theorem implies that it converges a.e.
    $endgroup$
    – Julián Aguirre
    Dec 10 '18 at 17:36


















3












$begingroup$


Let $x in (0, 2pi)$. Is the series $sum_{n=1}^{infty} frac{cos(n^2x)}{n}$ convergent? My guess is: YES and I would like to use Dirichlet test: however I have troubles proving that the partial sums $cos(x)+cos(4x)+...+cos(n^2x)$ are bounded due to the lack of the simple formula for this sum. Any ideas?










share|cite|improve this question











$endgroup$












  • $begingroup$
    I'm not sure, but I don't think the partial sums are bounded. My guess is that there are some $x$ with annoying continued fraction expansion. However, I think the set of such $x$ is measure $0$.
    $endgroup$
    – mathworker21
    Dec 10 '18 at 0:20










  • $begingroup$
    You could look at the following question first: Is there an x such that $cos(n^2x)>epsilon$ for all n for some epsilon >0. If that is the case (which looks likely to me even though I can‘t imediatly see such an element) you can lower bound that sum by the harmonic sum which is divergent. Therefore for that x the sum would be divergent as well
    $endgroup$
    – Börge
    Dec 10 '18 at 1:00












  • $begingroup$
    At least sometimes it is convergent: take $x=pi$.
    $endgroup$
    – YiFan
    Dec 10 '18 at 1:07










  • $begingroup$
    And sometimes it is divergent: take $x=frac{pi}2$. For odd indeces $n$ the fraction vanishes, for even indeces $n$ it is $frac 1n$.
    $endgroup$
    – Pavel R.
    Dec 10 '18 at 1:11










  • $begingroup$
    It is the Fourier series of an $L^2$ function. Carleson's theorem implies that it converges a.e.
    $endgroup$
    – Julián Aguirre
    Dec 10 '18 at 17:36
















3












3








3





$begingroup$


Let $x in (0, 2pi)$. Is the series $sum_{n=1}^{infty} frac{cos(n^2x)}{n}$ convergent? My guess is: YES and I would like to use Dirichlet test: however I have troubles proving that the partial sums $cos(x)+cos(4x)+...+cos(n^2x)$ are bounded due to the lack of the simple formula for this sum. Any ideas?










share|cite|improve this question











$endgroup$




Let $x in (0, 2pi)$. Is the series $sum_{n=1}^{infty} frac{cos(n^2x)}{n}$ convergent? My guess is: YES and I would like to use Dirichlet test: however I have troubles proving that the partial sums $cos(x)+cos(4x)+...+cos(n^2x)$ are bounded due to the lack of the simple formula for this sum. Any ideas?







real-analysis sequences-and-series convergence






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 10 '18 at 0:28









Dando18

4,73241235




4,73241235










asked Dec 10 '18 at 0:12









truebarantruebaran

2,2352824




2,2352824












  • $begingroup$
    I'm not sure, but I don't think the partial sums are bounded. My guess is that there are some $x$ with annoying continued fraction expansion. However, I think the set of such $x$ is measure $0$.
    $endgroup$
    – mathworker21
    Dec 10 '18 at 0:20










  • $begingroup$
    You could look at the following question first: Is there an x such that $cos(n^2x)>epsilon$ for all n for some epsilon >0. If that is the case (which looks likely to me even though I can‘t imediatly see such an element) you can lower bound that sum by the harmonic sum which is divergent. Therefore for that x the sum would be divergent as well
    $endgroup$
    – Börge
    Dec 10 '18 at 1:00












  • $begingroup$
    At least sometimes it is convergent: take $x=pi$.
    $endgroup$
    – YiFan
    Dec 10 '18 at 1:07










  • $begingroup$
    And sometimes it is divergent: take $x=frac{pi}2$. For odd indeces $n$ the fraction vanishes, for even indeces $n$ it is $frac 1n$.
    $endgroup$
    – Pavel R.
    Dec 10 '18 at 1:11










  • $begingroup$
    It is the Fourier series of an $L^2$ function. Carleson's theorem implies that it converges a.e.
    $endgroup$
    – Julián Aguirre
    Dec 10 '18 at 17:36




















  • $begingroup$
    I'm not sure, but I don't think the partial sums are bounded. My guess is that there are some $x$ with annoying continued fraction expansion. However, I think the set of such $x$ is measure $0$.
    $endgroup$
    – mathworker21
    Dec 10 '18 at 0:20










  • $begingroup$
    You could look at the following question first: Is there an x such that $cos(n^2x)>epsilon$ for all n for some epsilon >0. If that is the case (which looks likely to me even though I can‘t imediatly see such an element) you can lower bound that sum by the harmonic sum which is divergent. Therefore for that x the sum would be divergent as well
    $endgroup$
    – Börge
    Dec 10 '18 at 1:00












  • $begingroup$
    At least sometimes it is convergent: take $x=pi$.
    $endgroup$
    – YiFan
    Dec 10 '18 at 1:07










  • $begingroup$
    And sometimes it is divergent: take $x=frac{pi}2$. For odd indeces $n$ the fraction vanishes, for even indeces $n$ it is $frac 1n$.
    $endgroup$
    – Pavel R.
    Dec 10 '18 at 1:11










  • $begingroup$
    It is the Fourier series of an $L^2$ function. Carleson's theorem implies that it converges a.e.
    $endgroup$
    – Julián Aguirre
    Dec 10 '18 at 17:36


















$begingroup$
I'm not sure, but I don't think the partial sums are bounded. My guess is that there are some $x$ with annoying continued fraction expansion. However, I think the set of such $x$ is measure $0$.
$endgroup$
– mathworker21
Dec 10 '18 at 0:20




$begingroup$
I'm not sure, but I don't think the partial sums are bounded. My guess is that there are some $x$ with annoying continued fraction expansion. However, I think the set of such $x$ is measure $0$.
$endgroup$
– mathworker21
Dec 10 '18 at 0:20












$begingroup$
You could look at the following question first: Is there an x such that $cos(n^2x)>epsilon$ for all n for some epsilon >0. If that is the case (which looks likely to me even though I can‘t imediatly see such an element) you can lower bound that sum by the harmonic sum which is divergent. Therefore for that x the sum would be divergent as well
$endgroup$
– Börge
Dec 10 '18 at 1:00






$begingroup$
You could look at the following question first: Is there an x such that $cos(n^2x)>epsilon$ for all n for some epsilon >0. If that is the case (which looks likely to me even though I can‘t imediatly see such an element) you can lower bound that sum by the harmonic sum which is divergent. Therefore for that x the sum would be divergent as well
$endgroup$
– Börge
Dec 10 '18 at 1:00














$begingroup$
At least sometimes it is convergent: take $x=pi$.
$endgroup$
– YiFan
Dec 10 '18 at 1:07




$begingroup$
At least sometimes it is convergent: take $x=pi$.
$endgroup$
– YiFan
Dec 10 '18 at 1:07












$begingroup$
And sometimes it is divergent: take $x=frac{pi}2$. For odd indeces $n$ the fraction vanishes, for even indeces $n$ it is $frac 1n$.
$endgroup$
– Pavel R.
Dec 10 '18 at 1:11




$begingroup$
And sometimes it is divergent: take $x=frac{pi}2$. For odd indeces $n$ the fraction vanishes, for even indeces $n$ it is $frac 1n$.
$endgroup$
– Pavel R.
Dec 10 '18 at 1:11












$begingroup$
It is the Fourier series of an $L^2$ function. Carleson's theorem implies that it converges a.e.
$endgroup$
– Julián Aguirre
Dec 10 '18 at 17:36






$begingroup$
It is the Fourier series of an $L^2$ function. Carleson's theorem implies that it converges a.e.
$endgroup$
– Julián Aguirre
Dec 10 '18 at 17:36












0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033228%2fconvergence-of-a-series-involving-cosine%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033228%2fconvergence-of-a-series-involving-cosine%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

How to change which sound is reproduced for terminal bell?

Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents

Can I use Tabulator js library in my java Spring + Thymeleaf project?