What is $frac{d}{df}(frac{df}{dx})$?












3












$begingroup$


Suppose we have a function $f(x)$. Does $frac{d}{df}big(frac{df}{dx}big)$ exist, and if it does, what is the intuition behind it?










share|cite|improve this question











$endgroup$

















    3












    $begingroup$


    Suppose we have a function $f(x)$. Does $frac{d}{df}big(frac{df}{dx}big)$ exist, and if it does, what is the intuition behind it?










    share|cite|improve this question











    $endgroup$















      3












      3








      3





      $begingroup$


      Suppose we have a function $f(x)$. Does $frac{d}{df}big(frac{df}{dx}big)$ exist, and if it does, what is the intuition behind it?










      share|cite|improve this question











      $endgroup$




      Suppose we have a function $f(x)$. Does $frac{d}{df}big(frac{df}{dx}big)$ exist, and if it does, what is the intuition behind it?







      calculus






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Nov 29 '18 at 23:22









      amWhy

      1




      1










      asked Nov 29 '18 at 23:19









      lithium123lithium123

      632315




      632315






















          2 Answers
          2






          active

          oldest

          votes


















          3












          $begingroup$

          By the chain rule, $frac{mathrm{d}}{mathrm{d}f}left(frac{mathrm{d}f}{mathrm{d}x}right)=frac{mathrm{d}u}{mathrm{d}f}frac{mathrm{d}left(frac{mathrm{d}f}{mathrm{d}x}right)}{mathrm{d}u}$.
          Set $u=x$, for $frac{mathrm{d}}{mathrm{d}f}frac{mathrm{d}f}{mathrm{d}x}=frac{mathrm{d}x}{mathrm{d}f}frac{mathrm{d}left(frac{mathrm{d}f}{mathrm{d}x}right)}{mathrm{d}x}=frac{mathrm{d}x}{mathrm{d}f}frac{mathrm{d}^2f}{mathrm{d}x^2}$. Then use $frac{mathrm{d}x}{mathrm{d}f}=frac{1}{frac{mathrm{d}f}{mathrm{d}x}}$ to get $frac{1}{left(frac{mathrm{d}f}{mathrm{d}x}right)}frac{mathrm{d}^2f}{mathrm{d}x^2}$. Or $frac{1}{f'(x)}f''(x)$, if you prefer.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Note that this puts the constraint on whether $frac{mathrm{d}}{mathrm{d}f}frac{mathrm{d}f}{mathrm{d}x}$ can exist since $frac{mathrm{d}f}{mathrm{d}x}$ can't be $0$.
            $endgroup$
            – Jam
            Nov 29 '18 at 23:46



















          2












          $begingroup$

          By the chain rule it's $f''/f'$ with $g':=dg/dx$. Let's change $x$ to $t$ to discuss an important application in physics. Position $x$ has first two derivatives $v,,a$, so $a=vdv/dx=d(v^2/2)/dx$. This relates Newton's second law to energy conservation.






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3019376%2fwhat-is-fracddf-fracdfdx%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            3












            $begingroup$

            By the chain rule, $frac{mathrm{d}}{mathrm{d}f}left(frac{mathrm{d}f}{mathrm{d}x}right)=frac{mathrm{d}u}{mathrm{d}f}frac{mathrm{d}left(frac{mathrm{d}f}{mathrm{d}x}right)}{mathrm{d}u}$.
            Set $u=x$, for $frac{mathrm{d}}{mathrm{d}f}frac{mathrm{d}f}{mathrm{d}x}=frac{mathrm{d}x}{mathrm{d}f}frac{mathrm{d}left(frac{mathrm{d}f}{mathrm{d}x}right)}{mathrm{d}x}=frac{mathrm{d}x}{mathrm{d}f}frac{mathrm{d}^2f}{mathrm{d}x^2}$. Then use $frac{mathrm{d}x}{mathrm{d}f}=frac{1}{frac{mathrm{d}f}{mathrm{d}x}}$ to get $frac{1}{left(frac{mathrm{d}f}{mathrm{d}x}right)}frac{mathrm{d}^2f}{mathrm{d}x^2}$. Or $frac{1}{f'(x)}f''(x)$, if you prefer.






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              Note that this puts the constraint on whether $frac{mathrm{d}}{mathrm{d}f}frac{mathrm{d}f}{mathrm{d}x}$ can exist since $frac{mathrm{d}f}{mathrm{d}x}$ can't be $0$.
              $endgroup$
              – Jam
              Nov 29 '18 at 23:46
















            3












            $begingroup$

            By the chain rule, $frac{mathrm{d}}{mathrm{d}f}left(frac{mathrm{d}f}{mathrm{d}x}right)=frac{mathrm{d}u}{mathrm{d}f}frac{mathrm{d}left(frac{mathrm{d}f}{mathrm{d}x}right)}{mathrm{d}u}$.
            Set $u=x$, for $frac{mathrm{d}}{mathrm{d}f}frac{mathrm{d}f}{mathrm{d}x}=frac{mathrm{d}x}{mathrm{d}f}frac{mathrm{d}left(frac{mathrm{d}f}{mathrm{d}x}right)}{mathrm{d}x}=frac{mathrm{d}x}{mathrm{d}f}frac{mathrm{d}^2f}{mathrm{d}x^2}$. Then use $frac{mathrm{d}x}{mathrm{d}f}=frac{1}{frac{mathrm{d}f}{mathrm{d}x}}$ to get $frac{1}{left(frac{mathrm{d}f}{mathrm{d}x}right)}frac{mathrm{d}^2f}{mathrm{d}x^2}$. Or $frac{1}{f'(x)}f''(x)$, if you prefer.






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              Note that this puts the constraint on whether $frac{mathrm{d}}{mathrm{d}f}frac{mathrm{d}f}{mathrm{d}x}$ can exist since $frac{mathrm{d}f}{mathrm{d}x}$ can't be $0$.
              $endgroup$
              – Jam
              Nov 29 '18 at 23:46














            3












            3








            3





            $begingroup$

            By the chain rule, $frac{mathrm{d}}{mathrm{d}f}left(frac{mathrm{d}f}{mathrm{d}x}right)=frac{mathrm{d}u}{mathrm{d}f}frac{mathrm{d}left(frac{mathrm{d}f}{mathrm{d}x}right)}{mathrm{d}u}$.
            Set $u=x$, for $frac{mathrm{d}}{mathrm{d}f}frac{mathrm{d}f}{mathrm{d}x}=frac{mathrm{d}x}{mathrm{d}f}frac{mathrm{d}left(frac{mathrm{d}f}{mathrm{d}x}right)}{mathrm{d}x}=frac{mathrm{d}x}{mathrm{d}f}frac{mathrm{d}^2f}{mathrm{d}x^2}$. Then use $frac{mathrm{d}x}{mathrm{d}f}=frac{1}{frac{mathrm{d}f}{mathrm{d}x}}$ to get $frac{1}{left(frac{mathrm{d}f}{mathrm{d}x}right)}frac{mathrm{d}^2f}{mathrm{d}x^2}$. Or $frac{1}{f'(x)}f''(x)$, if you prefer.






            share|cite|improve this answer









            $endgroup$



            By the chain rule, $frac{mathrm{d}}{mathrm{d}f}left(frac{mathrm{d}f}{mathrm{d}x}right)=frac{mathrm{d}u}{mathrm{d}f}frac{mathrm{d}left(frac{mathrm{d}f}{mathrm{d}x}right)}{mathrm{d}u}$.
            Set $u=x$, for $frac{mathrm{d}}{mathrm{d}f}frac{mathrm{d}f}{mathrm{d}x}=frac{mathrm{d}x}{mathrm{d}f}frac{mathrm{d}left(frac{mathrm{d}f}{mathrm{d}x}right)}{mathrm{d}x}=frac{mathrm{d}x}{mathrm{d}f}frac{mathrm{d}^2f}{mathrm{d}x^2}$. Then use $frac{mathrm{d}x}{mathrm{d}f}=frac{1}{frac{mathrm{d}f}{mathrm{d}x}}$ to get $frac{1}{left(frac{mathrm{d}f}{mathrm{d}x}right)}frac{mathrm{d}^2f}{mathrm{d}x^2}$. Or $frac{1}{f'(x)}f''(x)$, if you prefer.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Nov 29 '18 at 23:34









            JamJam

            4,98521431




            4,98521431












            • $begingroup$
              Note that this puts the constraint on whether $frac{mathrm{d}}{mathrm{d}f}frac{mathrm{d}f}{mathrm{d}x}$ can exist since $frac{mathrm{d}f}{mathrm{d}x}$ can't be $0$.
              $endgroup$
              – Jam
              Nov 29 '18 at 23:46


















            • $begingroup$
              Note that this puts the constraint on whether $frac{mathrm{d}}{mathrm{d}f}frac{mathrm{d}f}{mathrm{d}x}$ can exist since $frac{mathrm{d}f}{mathrm{d}x}$ can't be $0$.
              $endgroup$
              – Jam
              Nov 29 '18 at 23:46
















            $begingroup$
            Note that this puts the constraint on whether $frac{mathrm{d}}{mathrm{d}f}frac{mathrm{d}f}{mathrm{d}x}$ can exist since $frac{mathrm{d}f}{mathrm{d}x}$ can't be $0$.
            $endgroup$
            – Jam
            Nov 29 '18 at 23:46




            $begingroup$
            Note that this puts the constraint on whether $frac{mathrm{d}}{mathrm{d}f}frac{mathrm{d}f}{mathrm{d}x}$ can exist since $frac{mathrm{d}f}{mathrm{d}x}$ can't be $0$.
            $endgroup$
            – Jam
            Nov 29 '18 at 23:46











            2












            $begingroup$

            By the chain rule it's $f''/f'$ with $g':=dg/dx$. Let's change $x$ to $t$ to discuss an important application in physics. Position $x$ has first two derivatives $v,,a$, so $a=vdv/dx=d(v^2/2)/dx$. This relates Newton's second law to energy conservation.






            share|cite|improve this answer









            $endgroup$


















              2












              $begingroup$

              By the chain rule it's $f''/f'$ with $g':=dg/dx$. Let's change $x$ to $t$ to discuss an important application in physics. Position $x$ has first two derivatives $v,,a$, so $a=vdv/dx=d(v^2/2)/dx$. This relates Newton's second law to energy conservation.






              share|cite|improve this answer









              $endgroup$
















                2












                2








                2





                $begingroup$

                By the chain rule it's $f''/f'$ with $g':=dg/dx$. Let's change $x$ to $t$ to discuss an important application in physics. Position $x$ has first two derivatives $v,,a$, so $a=vdv/dx=d(v^2/2)/dx$. This relates Newton's second law to energy conservation.






                share|cite|improve this answer









                $endgroup$



                By the chain rule it's $f''/f'$ with $g':=dg/dx$. Let's change $x$ to $t$ to discuss an important application in physics. Position $x$ has first two derivatives $v,,a$, so $a=vdv/dx=d(v^2/2)/dx$. This relates Newton's second law to energy conservation.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Nov 29 '18 at 23:24









                J.G.J.G.

                25.7k22540




                25.7k22540






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3019376%2fwhat-is-fracddf-fracdfdx%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Biblatex bibliography style without URLs when DOI exists (in Overleaf with Zotero bibliography)

                    ComboBox Display Member on multiple fields

                    Is it possible to collect Nectar points via Trainline?