If $T:C[0,1] rightarrow mathbb{R}$ is defined by $T_{x_0}(f)=f(x_0)$ then $||T||=1$.
$begingroup$
Let $x_0 in [0,1]$. Define $T_{x_0}:C[0,1] rightarrow mathbb{R}$ by $T_{x_0}(f)=f(x_0)$.
$||T||:= sup{|T_{x_0}(f)|: ||f||_{infty} leq 1}$ where $||f||_{infty}:=max{|f(x)|:x in [0,1]}$.
Prove that $||T||=1$.
For every $f in C[0,1]$, if $||f||_infty leq 1$ then $|f(x)| leq 1$ for all $x in [0,1]$. In particular, $|f(x_0)| leq 1$. So the set ${|T_{x_0}(f)|: ||f||_{infty} leq 1}$ is bounded above by $1$.
Assume some $a$ such that $0 leq a <1$ is the least upper bound. How can I derive a contradiction?
real-analysis functional-analysis analysis normed-spaces
$endgroup$
add a comment |
$begingroup$
Let $x_0 in [0,1]$. Define $T_{x_0}:C[0,1] rightarrow mathbb{R}$ by $T_{x_0}(f)=f(x_0)$.
$||T||:= sup{|T_{x_0}(f)|: ||f||_{infty} leq 1}$ where $||f||_{infty}:=max{|f(x)|:x in [0,1]}$.
Prove that $||T||=1$.
For every $f in C[0,1]$, if $||f||_infty leq 1$ then $|f(x)| leq 1$ for all $x in [0,1]$. In particular, $|f(x_0)| leq 1$. So the set ${|T_{x_0}(f)|: ||f||_{infty} leq 1}$ is bounded above by $1$.
Assume some $a$ such that $0 leq a <1$ is the least upper bound. How can I derive a contradiction?
real-analysis functional-analysis analysis normed-spaces
$endgroup$
1
$begingroup$
Explicitly find $x_0$ and $f$ so that $|T_{x_0}(f)| = 1$ i.e. $f(x_0) = 1$ for some $x_0 in [0,1]$ and $f in C[0,1]$ Then, $1$ belongs to the set you are trying to bound, hence will definitely be the supremum(maximum).
$endgroup$
– астон вілла олоф мэллбэрг
Nov 29 '18 at 23:09
add a comment |
$begingroup$
Let $x_0 in [0,1]$. Define $T_{x_0}:C[0,1] rightarrow mathbb{R}$ by $T_{x_0}(f)=f(x_0)$.
$||T||:= sup{|T_{x_0}(f)|: ||f||_{infty} leq 1}$ where $||f||_{infty}:=max{|f(x)|:x in [0,1]}$.
Prove that $||T||=1$.
For every $f in C[0,1]$, if $||f||_infty leq 1$ then $|f(x)| leq 1$ for all $x in [0,1]$. In particular, $|f(x_0)| leq 1$. So the set ${|T_{x_0}(f)|: ||f||_{infty} leq 1}$ is bounded above by $1$.
Assume some $a$ such that $0 leq a <1$ is the least upper bound. How can I derive a contradiction?
real-analysis functional-analysis analysis normed-spaces
$endgroup$
Let $x_0 in [0,1]$. Define $T_{x_0}:C[0,1] rightarrow mathbb{R}$ by $T_{x_0}(f)=f(x_0)$.
$||T||:= sup{|T_{x_0}(f)|: ||f||_{infty} leq 1}$ where $||f||_{infty}:=max{|f(x)|:x in [0,1]}$.
Prove that $||T||=1$.
For every $f in C[0,1]$, if $||f||_infty leq 1$ then $|f(x)| leq 1$ for all $x in [0,1]$. In particular, $|f(x_0)| leq 1$. So the set ${|T_{x_0}(f)|: ||f||_{infty} leq 1}$ is bounded above by $1$.
Assume some $a$ such that $0 leq a <1$ is the least upper bound. How can I derive a contradiction?
real-analysis functional-analysis analysis normed-spaces
real-analysis functional-analysis analysis normed-spaces
edited Nov 29 '18 at 23:10
José Carlos Santos
160k22126232
160k22126232
asked Nov 29 '18 at 23:05
bbwbbw
50038
50038
1
$begingroup$
Explicitly find $x_0$ and $f$ so that $|T_{x_0}(f)| = 1$ i.e. $f(x_0) = 1$ for some $x_0 in [0,1]$ and $f in C[0,1]$ Then, $1$ belongs to the set you are trying to bound, hence will definitely be the supremum(maximum).
$endgroup$
– астон вілла олоф мэллбэрг
Nov 29 '18 at 23:09
add a comment |
1
$begingroup$
Explicitly find $x_0$ and $f$ so that $|T_{x_0}(f)| = 1$ i.e. $f(x_0) = 1$ for some $x_0 in [0,1]$ and $f in C[0,1]$ Then, $1$ belongs to the set you are trying to bound, hence will definitely be the supremum(maximum).
$endgroup$
– астон вілла олоф мэллбэрг
Nov 29 '18 at 23:09
1
1
$begingroup$
Explicitly find $x_0$ and $f$ so that $|T_{x_0}(f)| = 1$ i.e. $f(x_0) = 1$ for some $x_0 in [0,1]$ and $f in C[0,1]$ Then, $1$ belongs to the set you are trying to bound, hence will definitely be the supremum(maximum).
$endgroup$
– астон вілла олоф мэллбэрг
Nov 29 '18 at 23:09
$begingroup$
Explicitly find $x_0$ and $f$ so that $|T_{x_0}(f)| = 1$ i.e. $f(x_0) = 1$ for some $x_0 in [0,1]$ and $f in C[0,1]$ Then, $1$ belongs to the set you are trying to bound, hence will definitely be the supremum(maximum).
$endgroup$
– астон вілла олоф мэллбэрг
Nov 29 '18 at 23:09
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Suppose that $f$ is the constant function $1$. Then $lVert frVert=1$ and $bigllvert f(x_0)bigrrvert=1$. So, $lVert T_{x_0}rVert=1$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3019364%2fif-tc0-1-rightarrow-mathbbr-is-defined-by-t-x-0f-fx-0-then-t%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Suppose that $f$ is the constant function $1$. Then $lVert frVert=1$ and $bigllvert f(x_0)bigrrvert=1$. So, $lVert T_{x_0}rVert=1$.
$endgroup$
add a comment |
$begingroup$
Suppose that $f$ is the constant function $1$. Then $lVert frVert=1$ and $bigllvert f(x_0)bigrrvert=1$. So, $lVert T_{x_0}rVert=1$.
$endgroup$
add a comment |
$begingroup$
Suppose that $f$ is the constant function $1$. Then $lVert frVert=1$ and $bigllvert f(x_0)bigrrvert=1$. So, $lVert T_{x_0}rVert=1$.
$endgroup$
Suppose that $f$ is the constant function $1$. Then $lVert frVert=1$ and $bigllvert f(x_0)bigrrvert=1$. So, $lVert T_{x_0}rVert=1$.
answered Nov 29 '18 at 23:08
José Carlos SantosJosé Carlos Santos
160k22126232
160k22126232
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3019364%2fif-tc0-1-rightarrow-mathbbr-is-defined-by-t-x-0f-fx-0-then-t%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Explicitly find $x_0$ and $f$ so that $|T_{x_0}(f)| = 1$ i.e. $f(x_0) = 1$ for some $x_0 in [0,1]$ and $f in C[0,1]$ Then, $1$ belongs to the set you are trying to bound, hence will definitely be the supremum(maximum).
$endgroup$
– астон вілла олоф мэллбэрг
Nov 29 '18 at 23:09