$I = int_{- infty}^{infty} delta (n - ||mathbf{x}||^2) mathrm d mathbf{x} $ should not diverge
$begingroup$
I'm having trouble evaluating this integral:
$$I = int_{-infty}^infty delta (n - ||mathbf{x}||^2) mathrm d mathbf{x} $$
where $delta(x)$ is Dirac delta function, $mathbf x$ is the real $n$-dimensional vector $(x_1,...,x_n)$, and $||mathbf{x}||^2 = sum_{i=1}^n x_i^2$. Here I use the short-hand notation:
$$int_{-infty}^inftymathrm d mathbf{x} = int_{-infty}^inftymathrm d x_1 dots int_{-infty}^inftymathrm d x_n$$
Here is what I tried to do. Using the integral representation of Dirac's delta function $delta (x) = int_{- infty}^{infty} frac{d lambda}{2 pi} e^{i lambda x}$, I get
$$I = int_{- infty}^{infty} d mathbf{x} int_{-infty}^{infty}
frac{dlambda}{2pi} mathrm e^{ilambda(n - ||
mathbf{x}||^2)} = int_{- infty}^{infty} frac{dlambda}{2pi} e^{-i lambda n} left( int_{- infty}^{infty} e^{ilambda
x^2} dx right)^n$$
I evaluated the inner integral with Mathematica:
$$int_{- infty}^{infty} e^{ilambda
x^2} dx = sqrt{frac{pi}{2}} frac{1 +i mathrm{sgn}(lambda)}{sqrt{|lambda
|}}$$
But then when I try to substitute this I get a diverging integral in $lambda$.
What did I do wrong?
Note that the original integral is well behaved. Using polar coordinates it can be shown that $I = n^{n/2-1} pi^{n/2} / Gamma(n/2)$ (see https://doi.org/10.1093/qmath/12.1.165, or my answer below). Some step of my derivation leads to a fictitious divergence.
Update: @user587192's answer found the error in my calculation. I cannot exchange the order of integrations on $x$ and $lambda$. My next question is whether there is a way to rescue this calculation? Manipulations with the Fourier transform of the Dirac delta are very convenient in more complicated situations. This is evident from the algebraic complexity of the spherical coordinates appraoch. Is there way to exploit the convenience of the Fourier representation of the Dirac delta here?
definite-integrals area surfaces dirac-delta spheres
$endgroup$
add a comment |
$begingroup$
I'm having trouble evaluating this integral:
$$I = int_{-infty}^infty delta (n - ||mathbf{x}||^2) mathrm d mathbf{x} $$
where $delta(x)$ is Dirac delta function, $mathbf x$ is the real $n$-dimensional vector $(x_1,...,x_n)$, and $||mathbf{x}||^2 = sum_{i=1}^n x_i^2$. Here I use the short-hand notation:
$$int_{-infty}^inftymathrm d mathbf{x} = int_{-infty}^inftymathrm d x_1 dots int_{-infty}^inftymathrm d x_n$$
Here is what I tried to do. Using the integral representation of Dirac's delta function $delta (x) = int_{- infty}^{infty} frac{d lambda}{2 pi} e^{i lambda x}$, I get
$$I = int_{- infty}^{infty} d mathbf{x} int_{-infty}^{infty}
frac{dlambda}{2pi} mathrm e^{ilambda(n - ||
mathbf{x}||^2)} = int_{- infty}^{infty} frac{dlambda}{2pi} e^{-i lambda n} left( int_{- infty}^{infty} e^{ilambda
x^2} dx right)^n$$
I evaluated the inner integral with Mathematica:
$$int_{- infty}^{infty} e^{ilambda
x^2} dx = sqrt{frac{pi}{2}} frac{1 +i mathrm{sgn}(lambda)}{sqrt{|lambda
|}}$$
But then when I try to substitute this I get a diverging integral in $lambda$.
What did I do wrong?
Note that the original integral is well behaved. Using polar coordinates it can be shown that $I = n^{n/2-1} pi^{n/2} / Gamma(n/2)$ (see https://doi.org/10.1093/qmath/12.1.165, or my answer below). Some step of my derivation leads to a fictitious divergence.
Update: @user587192's answer found the error in my calculation. I cannot exchange the order of integrations on $x$ and $lambda$. My next question is whether there is a way to rescue this calculation? Manipulations with the Fourier transform of the Dirac delta are very convenient in more complicated situations. This is evident from the algebraic complexity of the spherical coordinates appraoch. Is there way to exploit the convenience of the Fourier representation of the Dirac delta here?
definite-integrals area surfaces dirac-delta spheres
$endgroup$
$begingroup$
Comments are not for extended discussion; this conversation has been moved to chat.
$endgroup$
– Aloizio Macedo♦
Nov 30 '18 at 21:58
add a comment |
$begingroup$
I'm having trouble evaluating this integral:
$$I = int_{-infty}^infty delta (n - ||mathbf{x}||^2) mathrm d mathbf{x} $$
where $delta(x)$ is Dirac delta function, $mathbf x$ is the real $n$-dimensional vector $(x_1,...,x_n)$, and $||mathbf{x}||^2 = sum_{i=1}^n x_i^2$. Here I use the short-hand notation:
$$int_{-infty}^inftymathrm d mathbf{x} = int_{-infty}^inftymathrm d x_1 dots int_{-infty}^inftymathrm d x_n$$
Here is what I tried to do. Using the integral representation of Dirac's delta function $delta (x) = int_{- infty}^{infty} frac{d lambda}{2 pi} e^{i lambda x}$, I get
$$I = int_{- infty}^{infty} d mathbf{x} int_{-infty}^{infty}
frac{dlambda}{2pi} mathrm e^{ilambda(n - ||
mathbf{x}||^2)} = int_{- infty}^{infty} frac{dlambda}{2pi} e^{-i lambda n} left( int_{- infty}^{infty} e^{ilambda
x^2} dx right)^n$$
I evaluated the inner integral with Mathematica:
$$int_{- infty}^{infty} e^{ilambda
x^2} dx = sqrt{frac{pi}{2}} frac{1 +i mathrm{sgn}(lambda)}{sqrt{|lambda
|}}$$
But then when I try to substitute this I get a diverging integral in $lambda$.
What did I do wrong?
Note that the original integral is well behaved. Using polar coordinates it can be shown that $I = n^{n/2-1} pi^{n/2} / Gamma(n/2)$ (see https://doi.org/10.1093/qmath/12.1.165, or my answer below). Some step of my derivation leads to a fictitious divergence.
Update: @user587192's answer found the error in my calculation. I cannot exchange the order of integrations on $x$ and $lambda$. My next question is whether there is a way to rescue this calculation? Manipulations with the Fourier transform of the Dirac delta are very convenient in more complicated situations. This is evident from the algebraic complexity of the spherical coordinates appraoch. Is there way to exploit the convenience of the Fourier representation of the Dirac delta here?
definite-integrals area surfaces dirac-delta spheres
$endgroup$
I'm having trouble evaluating this integral:
$$I = int_{-infty}^infty delta (n - ||mathbf{x}||^2) mathrm d mathbf{x} $$
where $delta(x)$ is Dirac delta function, $mathbf x$ is the real $n$-dimensional vector $(x_1,...,x_n)$, and $||mathbf{x}||^2 = sum_{i=1}^n x_i^2$. Here I use the short-hand notation:
$$int_{-infty}^inftymathrm d mathbf{x} = int_{-infty}^inftymathrm d x_1 dots int_{-infty}^inftymathrm d x_n$$
Here is what I tried to do. Using the integral representation of Dirac's delta function $delta (x) = int_{- infty}^{infty} frac{d lambda}{2 pi} e^{i lambda x}$, I get
$$I = int_{- infty}^{infty} d mathbf{x} int_{-infty}^{infty}
frac{dlambda}{2pi} mathrm e^{ilambda(n - ||
mathbf{x}||^2)} = int_{- infty}^{infty} frac{dlambda}{2pi} e^{-i lambda n} left( int_{- infty}^{infty} e^{ilambda
x^2} dx right)^n$$
I evaluated the inner integral with Mathematica:
$$int_{- infty}^{infty} e^{ilambda
x^2} dx = sqrt{frac{pi}{2}} frac{1 +i mathrm{sgn}(lambda)}{sqrt{|lambda
|}}$$
But then when I try to substitute this I get a diverging integral in $lambda$.
What did I do wrong?
Note that the original integral is well behaved. Using polar coordinates it can be shown that $I = n^{n/2-1} pi^{n/2} / Gamma(n/2)$ (see https://doi.org/10.1093/qmath/12.1.165, or my answer below). Some step of my derivation leads to a fictitious divergence.
Update: @user587192's answer found the error in my calculation. I cannot exchange the order of integrations on $x$ and $lambda$. My next question is whether there is a way to rescue this calculation? Manipulations with the Fourier transform of the Dirac delta are very convenient in more complicated situations. This is evident from the algebraic complexity of the spherical coordinates appraoch. Is there way to exploit the convenience of the Fourier representation of the Dirac delta here?
definite-integrals area surfaces dirac-delta spheres
definite-integrals area surfaces dirac-delta spheres
edited Nov 30 '18 at 16:00
becko
asked Nov 29 '18 at 23:16
beckobecko
2,35931942
2,35931942
$begingroup$
Comments are not for extended discussion; this conversation has been moved to chat.
$endgroup$
– Aloizio Macedo♦
Nov 30 '18 at 21:58
add a comment |
$begingroup$
Comments are not for extended discussion; this conversation has been moved to chat.
$endgroup$
– Aloizio Macedo♦
Nov 30 '18 at 21:58
$begingroup$
Comments are not for extended discussion; this conversation has been moved to chat.
$endgroup$
– Aloizio Macedo♦
Nov 30 '18 at 21:58
$begingroup$
Comments are not for extended discussion; this conversation has been moved to chat.
$endgroup$
– Aloizio Macedo♦
Nov 30 '18 at 21:58
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Here is the solution in (hyper)spherical coordinates, proving that $I$ should be well behaved. The spherical coordinates are defined by:
$$x_1 = r cos(phi_1),quad x_2 = r sin(phi_1)cos(phi_2),dots,quad x_n = r sin(phi_1)dotssin(phi_{n-2})sin(theta)$$
where $0lephi_ilepi$, $0lethetale2pi$ and $0le r<infty$. The volume element is then:
$$mathrm d x_1 dots mathrm d x_n = r^{n-1}sin^{n-2}(phi_1)dotssin(phi_{n-2}) mathrm dr mathrm dphi_1dotsmathrm dphi_{n-2}mathrm dtheta$$
We have:
$$begin{aligned}
I & = int_{mathbb{R}^n} delta (n - | mathbf{x} |^2) mathrm d
mathbf{x}\
& = int_0^{pi} mathrm d phi_1 ldots int_0^{pi}mathrm d phi_{n - 2} int_0^{2 pi}
mathrm d theta int_0^{infty} mathrm d r , delta (n - r^2) r^{n - 1} sin^{n -
2} (phi_1) ldots sin (phi_{n - 2})\
& = left( int_0^{infty} delta (n - r^2) r^{n - 1} mathrm d r right)
left( int_0^{2 pi} mathrm d theta mathrm d theta right) left(
int_0^{pi} sin^{n - 2} (phi_1) mathrm d phi_1 right) ldots left(
int_0^{pi} sin (phi_{n - 2}) mathrm d phi_{n - 2} right)\
& = frac{pi^{n / 2} n^{n / 2 - 1}}{Gamma (n / 2)}
end{aligned}$$
This is not an answer to my question. My question is: What did I do wrong to that leads to a divergent integral?
$endgroup$
1
$begingroup$
This is not an answer to your question. I think you'd better add it to your post instead of here.
$endgroup$
– user587192
Nov 30 '18 at 14:03
1
$begingroup$
@user587192 It is not an answer. But it is customary on this site to sometimes post solution attempts as (incomplete) answers.
$endgroup$
– becko
Nov 30 '18 at 14:08
add a comment |
$begingroup$
There is a trick one can do to use the Fourier transform and still have converging integrals. The trick is to multiply the integrand by $mathrm e^{(1-||mathbf x||^2)} = 1$. Then
$$begin{aligned}
int_{- infty}^{infty} delta (1 - ||mathbf x||^2) mathrm d
mathbf x & = int_{- infty}^{infty} mathrm d mathbf x
int_{- infty}^{infty} frac{mathrm d lambda}{2 pi} mathrm e^{(1
+mathfrak{i} lambda) (1 - ||mathbf x||^2)}\
& = int_{- infty}^{infty} frac{mathrm d lambda}{2 pi} mathrm e^{1
+mathfrak{i} lambda} left( int_{- infty}^{infty} mathrm e^{- (1
+mathfrak{i} lambda) x^2} mathrm dx right)^N\
& = int_{- infty}^{infty} frac{mathrm d lambda}{2 pi} mathrm e^{1
+mathfrak{i} lambda} left( frac{pi}{1 +mathfrak{i} lambda} right)^{N
/ 2}\
& = pi^{N / 2} / Gamma (N / 2)
end{aligned}$$
which is the correct result. Here all intermediate integrals converge and the integration order can be exchanged.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3019373%2fi-int-infty-infty-delta-n-mathbfx2-mathrm-d-mathbfx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Here is the solution in (hyper)spherical coordinates, proving that $I$ should be well behaved. The spherical coordinates are defined by:
$$x_1 = r cos(phi_1),quad x_2 = r sin(phi_1)cos(phi_2),dots,quad x_n = r sin(phi_1)dotssin(phi_{n-2})sin(theta)$$
where $0lephi_ilepi$, $0lethetale2pi$ and $0le r<infty$. The volume element is then:
$$mathrm d x_1 dots mathrm d x_n = r^{n-1}sin^{n-2}(phi_1)dotssin(phi_{n-2}) mathrm dr mathrm dphi_1dotsmathrm dphi_{n-2}mathrm dtheta$$
We have:
$$begin{aligned}
I & = int_{mathbb{R}^n} delta (n - | mathbf{x} |^2) mathrm d
mathbf{x}\
& = int_0^{pi} mathrm d phi_1 ldots int_0^{pi}mathrm d phi_{n - 2} int_0^{2 pi}
mathrm d theta int_0^{infty} mathrm d r , delta (n - r^2) r^{n - 1} sin^{n -
2} (phi_1) ldots sin (phi_{n - 2})\
& = left( int_0^{infty} delta (n - r^2) r^{n - 1} mathrm d r right)
left( int_0^{2 pi} mathrm d theta mathrm d theta right) left(
int_0^{pi} sin^{n - 2} (phi_1) mathrm d phi_1 right) ldots left(
int_0^{pi} sin (phi_{n - 2}) mathrm d phi_{n - 2} right)\
& = frac{pi^{n / 2} n^{n / 2 - 1}}{Gamma (n / 2)}
end{aligned}$$
This is not an answer to my question. My question is: What did I do wrong to that leads to a divergent integral?
$endgroup$
1
$begingroup$
This is not an answer to your question. I think you'd better add it to your post instead of here.
$endgroup$
– user587192
Nov 30 '18 at 14:03
1
$begingroup$
@user587192 It is not an answer. But it is customary on this site to sometimes post solution attempts as (incomplete) answers.
$endgroup$
– becko
Nov 30 '18 at 14:08
add a comment |
$begingroup$
Here is the solution in (hyper)spherical coordinates, proving that $I$ should be well behaved. The spherical coordinates are defined by:
$$x_1 = r cos(phi_1),quad x_2 = r sin(phi_1)cos(phi_2),dots,quad x_n = r sin(phi_1)dotssin(phi_{n-2})sin(theta)$$
where $0lephi_ilepi$, $0lethetale2pi$ and $0le r<infty$. The volume element is then:
$$mathrm d x_1 dots mathrm d x_n = r^{n-1}sin^{n-2}(phi_1)dotssin(phi_{n-2}) mathrm dr mathrm dphi_1dotsmathrm dphi_{n-2}mathrm dtheta$$
We have:
$$begin{aligned}
I & = int_{mathbb{R}^n} delta (n - | mathbf{x} |^2) mathrm d
mathbf{x}\
& = int_0^{pi} mathrm d phi_1 ldots int_0^{pi}mathrm d phi_{n - 2} int_0^{2 pi}
mathrm d theta int_0^{infty} mathrm d r , delta (n - r^2) r^{n - 1} sin^{n -
2} (phi_1) ldots sin (phi_{n - 2})\
& = left( int_0^{infty} delta (n - r^2) r^{n - 1} mathrm d r right)
left( int_0^{2 pi} mathrm d theta mathrm d theta right) left(
int_0^{pi} sin^{n - 2} (phi_1) mathrm d phi_1 right) ldots left(
int_0^{pi} sin (phi_{n - 2}) mathrm d phi_{n - 2} right)\
& = frac{pi^{n / 2} n^{n / 2 - 1}}{Gamma (n / 2)}
end{aligned}$$
This is not an answer to my question. My question is: What did I do wrong to that leads to a divergent integral?
$endgroup$
1
$begingroup$
This is not an answer to your question. I think you'd better add it to your post instead of here.
$endgroup$
– user587192
Nov 30 '18 at 14:03
1
$begingroup$
@user587192 It is not an answer. But it is customary on this site to sometimes post solution attempts as (incomplete) answers.
$endgroup$
– becko
Nov 30 '18 at 14:08
add a comment |
$begingroup$
Here is the solution in (hyper)spherical coordinates, proving that $I$ should be well behaved. The spherical coordinates are defined by:
$$x_1 = r cos(phi_1),quad x_2 = r sin(phi_1)cos(phi_2),dots,quad x_n = r sin(phi_1)dotssin(phi_{n-2})sin(theta)$$
where $0lephi_ilepi$, $0lethetale2pi$ and $0le r<infty$. The volume element is then:
$$mathrm d x_1 dots mathrm d x_n = r^{n-1}sin^{n-2}(phi_1)dotssin(phi_{n-2}) mathrm dr mathrm dphi_1dotsmathrm dphi_{n-2}mathrm dtheta$$
We have:
$$begin{aligned}
I & = int_{mathbb{R}^n} delta (n - | mathbf{x} |^2) mathrm d
mathbf{x}\
& = int_0^{pi} mathrm d phi_1 ldots int_0^{pi}mathrm d phi_{n - 2} int_0^{2 pi}
mathrm d theta int_0^{infty} mathrm d r , delta (n - r^2) r^{n - 1} sin^{n -
2} (phi_1) ldots sin (phi_{n - 2})\
& = left( int_0^{infty} delta (n - r^2) r^{n - 1} mathrm d r right)
left( int_0^{2 pi} mathrm d theta mathrm d theta right) left(
int_0^{pi} sin^{n - 2} (phi_1) mathrm d phi_1 right) ldots left(
int_0^{pi} sin (phi_{n - 2}) mathrm d phi_{n - 2} right)\
& = frac{pi^{n / 2} n^{n / 2 - 1}}{Gamma (n / 2)}
end{aligned}$$
This is not an answer to my question. My question is: What did I do wrong to that leads to a divergent integral?
$endgroup$
Here is the solution in (hyper)spherical coordinates, proving that $I$ should be well behaved. The spherical coordinates are defined by:
$$x_1 = r cos(phi_1),quad x_2 = r sin(phi_1)cos(phi_2),dots,quad x_n = r sin(phi_1)dotssin(phi_{n-2})sin(theta)$$
where $0lephi_ilepi$, $0lethetale2pi$ and $0le r<infty$. The volume element is then:
$$mathrm d x_1 dots mathrm d x_n = r^{n-1}sin^{n-2}(phi_1)dotssin(phi_{n-2}) mathrm dr mathrm dphi_1dotsmathrm dphi_{n-2}mathrm dtheta$$
We have:
$$begin{aligned}
I & = int_{mathbb{R}^n} delta (n - | mathbf{x} |^2) mathrm d
mathbf{x}\
& = int_0^{pi} mathrm d phi_1 ldots int_0^{pi}mathrm d phi_{n - 2} int_0^{2 pi}
mathrm d theta int_0^{infty} mathrm d r , delta (n - r^2) r^{n - 1} sin^{n -
2} (phi_1) ldots sin (phi_{n - 2})\
& = left( int_0^{infty} delta (n - r^2) r^{n - 1} mathrm d r right)
left( int_0^{2 pi} mathrm d theta mathrm d theta right) left(
int_0^{pi} sin^{n - 2} (phi_1) mathrm d phi_1 right) ldots left(
int_0^{pi} sin (phi_{n - 2}) mathrm d phi_{n - 2} right)\
& = frac{pi^{n / 2} n^{n / 2 - 1}}{Gamma (n / 2)}
end{aligned}$$
This is not an answer to my question. My question is: What did I do wrong to that leads to a divergent integral?
edited Nov 30 '18 at 14:53
answered Nov 30 '18 at 14:00
beckobecko
2,35931942
2,35931942
1
$begingroup$
This is not an answer to your question. I think you'd better add it to your post instead of here.
$endgroup$
– user587192
Nov 30 '18 at 14:03
1
$begingroup$
@user587192 It is not an answer. But it is customary on this site to sometimes post solution attempts as (incomplete) answers.
$endgroup$
– becko
Nov 30 '18 at 14:08
add a comment |
1
$begingroup$
This is not an answer to your question. I think you'd better add it to your post instead of here.
$endgroup$
– user587192
Nov 30 '18 at 14:03
1
$begingroup$
@user587192 It is not an answer. But it is customary on this site to sometimes post solution attempts as (incomplete) answers.
$endgroup$
– becko
Nov 30 '18 at 14:08
1
1
$begingroup$
This is not an answer to your question. I think you'd better add it to your post instead of here.
$endgroup$
– user587192
Nov 30 '18 at 14:03
$begingroup$
This is not an answer to your question. I think you'd better add it to your post instead of here.
$endgroup$
– user587192
Nov 30 '18 at 14:03
1
1
$begingroup$
@user587192 It is not an answer. But it is customary on this site to sometimes post solution attempts as (incomplete) answers.
$endgroup$
– becko
Nov 30 '18 at 14:08
$begingroup$
@user587192 It is not an answer. But it is customary on this site to sometimes post solution attempts as (incomplete) answers.
$endgroup$
– becko
Nov 30 '18 at 14:08
add a comment |
$begingroup$
There is a trick one can do to use the Fourier transform and still have converging integrals. The trick is to multiply the integrand by $mathrm e^{(1-||mathbf x||^2)} = 1$. Then
$$begin{aligned}
int_{- infty}^{infty} delta (1 - ||mathbf x||^2) mathrm d
mathbf x & = int_{- infty}^{infty} mathrm d mathbf x
int_{- infty}^{infty} frac{mathrm d lambda}{2 pi} mathrm e^{(1
+mathfrak{i} lambda) (1 - ||mathbf x||^2)}\
& = int_{- infty}^{infty} frac{mathrm d lambda}{2 pi} mathrm e^{1
+mathfrak{i} lambda} left( int_{- infty}^{infty} mathrm e^{- (1
+mathfrak{i} lambda) x^2} mathrm dx right)^N\
& = int_{- infty}^{infty} frac{mathrm d lambda}{2 pi} mathrm e^{1
+mathfrak{i} lambda} left( frac{pi}{1 +mathfrak{i} lambda} right)^{N
/ 2}\
& = pi^{N / 2} / Gamma (N / 2)
end{aligned}$$
which is the correct result. Here all intermediate integrals converge and the integration order can be exchanged.
$endgroup$
add a comment |
$begingroup$
There is a trick one can do to use the Fourier transform and still have converging integrals. The trick is to multiply the integrand by $mathrm e^{(1-||mathbf x||^2)} = 1$. Then
$$begin{aligned}
int_{- infty}^{infty} delta (1 - ||mathbf x||^2) mathrm d
mathbf x & = int_{- infty}^{infty} mathrm d mathbf x
int_{- infty}^{infty} frac{mathrm d lambda}{2 pi} mathrm e^{(1
+mathfrak{i} lambda) (1 - ||mathbf x||^2)}\
& = int_{- infty}^{infty} frac{mathrm d lambda}{2 pi} mathrm e^{1
+mathfrak{i} lambda} left( int_{- infty}^{infty} mathrm e^{- (1
+mathfrak{i} lambda) x^2} mathrm dx right)^N\
& = int_{- infty}^{infty} frac{mathrm d lambda}{2 pi} mathrm e^{1
+mathfrak{i} lambda} left( frac{pi}{1 +mathfrak{i} lambda} right)^{N
/ 2}\
& = pi^{N / 2} / Gamma (N / 2)
end{aligned}$$
which is the correct result. Here all intermediate integrals converge and the integration order can be exchanged.
$endgroup$
add a comment |
$begingroup$
There is a trick one can do to use the Fourier transform and still have converging integrals. The trick is to multiply the integrand by $mathrm e^{(1-||mathbf x||^2)} = 1$. Then
$$begin{aligned}
int_{- infty}^{infty} delta (1 - ||mathbf x||^2) mathrm d
mathbf x & = int_{- infty}^{infty} mathrm d mathbf x
int_{- infty}^{infty} frac{mathrm d lambda}{2 pi} mathrm e^{(1
+mathfrak{i} lambda) (1 - ||mathbf x||^2)}\
& = int_{- infty}^{infty} frac{mathrm d lambda}{2 pi} mathrm e^{1
+mathfrak{i} lambda} left( int_{- infty}^{infty} mathrm e^{- (1
+mathfrak{i} lambda) x^2} mathrm dx right)^N\
& = int_{- infty}^{infty} frac{mathrm d lambda}{2 pi} mathrm e^{1
+mathfrak{i} lambda} left( frac{pi}{1 +mathfrak{i} lambda} right)^{N
/ 2}\
& = pi^{N / 2} / Gamma (N / 2)
end{aligned}$$
which is the correct result. Here all intermediate integrals converge and the integration order can be exchanged.
$endgroup$
There is a trick one can do to use the Fourier transform and still have converging integrals. The trick is to multiply the integrand by $mathrm e^{(1-||mathbf x||^2)} = 1$. Then
$$begin{aligned}
int_{- infty}^{infty} delta (1 - ||mathbf x||^2) mathrm d
mathbf x & = int_{- infty}^{infty} mathrm d mathbf x
int_{- infty}^{infty} frac{mathrm d lambda}{2 pi} mathrm e^{(1
+mathfrak{i} lambda) (1 - ||mathbf x||^2)}\
& = int_{- infty}^{infty} frac{mathrm d lambda}{2 pi} mathrm e^{1
+mathfrak{i} lambda} left( int_{- infty}^{infty} mathrm e^{- (1
+mathfrak{i} lambda) x^2} mathrm dx right)^N\
& = int_{- infty}^{infty} frac{mathrm d lambda}{2 pi} mathrm e^{1
+mathfrak{i} lambda} left( frac{pi}{1 +mathfrak{i} lambda} right)^{N
/ 2}\
& = pi^{N / 2} / Gamma (N / 2)
end{aligned}$$
which is the correct result. Here all intermediate integrals converge and the integration order can be exchanged.
edited Nov 30 '18 at 18:46
answered Nov 30 '18 at 17:44
beckobecko
2,35931942
2,35931942
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3019373%2fi-int-infty-infty-delta-n-mathbfx2-mathrm-d-mathbfx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Comments are not for extended discussion; this conversation has been moved to chat.
$endgroup$
– Aloizio Macedo♦
Nov 30 '18 at 21:58