Solving differential equation
$begingroup$
I want to solve the following differential equation with initial conditions:
$$frac{mathrm{d}^2 y}{mathrm{d} x^2}=frac{x , y(x)}{sqrt{1-x}}$$
But do not know how to actually solve it. Any suggestion?
ordinary-differential-equations
$endgroup$
add a comment |
$begingroup$
I want to solve the following differential equation with initial conditions:
$$frac{mathrm{d}^2 y}{mathrm{d} x^2}=frac{x , y(x)}{sqrt{1-x}}$$
But do not know how to actually solve it. Any suggestion?
ordinary-differential-equations
$endgroup$
1
$begingroup$
$dfrac{y''}y=dfrac x{sqrt{1-x}}$
$endgroup$
– Lucian
Apr 30 '15 at 16:26
1
$begingroup$
Do you believe that there is a closed-form solution?
$endgroup$
– Mark Viola
Apr 30 '15 at 16:44
$begingroup$
I like obtain closed-form solution. But Do you have any suggestion for approximate solution?
$endgroup$
– Agheli
Apr 30 '15 at 16:57
2
$begingroup$
@Lucian Yes, and?
$endgroup$
– Did
Apr 30 '15 at 21:47
$begingroup$
If you would be happy with an asymptotic solution, you should take a look at these notes on the WKB technique: w3.pppl.gov/~rwhite/wkb.pdf
$endgroup$
– Josh Burby
Apr 30 '15 at 21:49
add a comment |
$begingroup$
I want to solve the following differential equation with initial conditions:
$$frac{mathrm{d}^2 y}{mathrm{d} x^2}=frac{x , y(x)}{sqrt{1-x}}$$
But do not know how to actually solve it. Any suggestion?
ordinary-differential-equations
$endgroup$
I want to solve the following differential equation with initial conditions:
$$frac{mathrm{d}^2 y}{mathrm{d} x^2}=frac{x , y(x)}{sqrt{1-x}}$$
But do not know how to actually solve it. Any suggestion?
ordinary-differential-equations
ordinary-differential-equations
edited May 1 '15 at 10:47
Agheli
asked Apr 30 '15 at 15:58
AgheliAgheli
212
212
1
$begingroup$
$dfrac{y''}y=dfrac x{sqrt{1-x}}$
$endgroup$
– Lucian
Apr 30 '15 at 16:26
1
$begingroup$
Do you believe that there is a closed-form solution?
$endgroup$
– Mark Viola
Apr 30 '15 at 16:44
$begingroup$
I like obtain closed-form solution. But Do you have any suggestion for approximate solution?
$endgroup$
– Agheli
Apr 30 '15 at 16:57
2
$begingroup$
@Lucian Yes, and?
$endgroup$
– Did
Apr 30 '15 at 21:47
$begingroup$
If you would be happy with an asymptotic solution, you should take a look at these notes on the WKB technique: w3.pppl.gov/~rwhite/wkb.pdf
$endgroup$
– Josh Burby
Apr 30 '15 at 21:49
add a comment |
1
$begingroup$
$dfrac{y''}y=dfrac x{sqrt{1-x}}$
$endgroup$
– Lucian
Apr 30 '15 at 16:26
1
$begingroup$
Do you believe that there is a closed-form solution?
$endgroup$
– Mark Viola
Apr 30 '15 at 16:44
$begingroup$
I like obtain closed-form solution. But Do you have any suggestion for approximate solution?
$endgroup$
– Agheli
Apr 30 '15 at 16:57
2
$begingroup$
@Lucian Yes, and?
$endgroup$
– Did
Apr 30 '15 at 21:47
$begingroup$
If you would be happy with an asymptotic solution, you should take a look at these notes on the WKB technique: w3.pppl.gov/~rwhite/wkb.pdf
$endgroup$
– Josh Burby
Apr 30 '15 at 21:49
1
1
$begingroup$
$dfrac{y''}y=dfrac x{sqrt{1-x}}$
$endgroup$
– Lucian
Apr 30 '15 at 16:26
$begingroup$
$dfrac{y''}y=dfrac x{sqrt{1-x}}$
$endgroup$
– Lucian
Apr 30 '15 at 16:26
1
1
$begingroup$
Do you believe that there is a closed-form solution?
$endgroup$
– Mark Viola
Apr 30 '15 at 16:44
$begingroup$
Do you believe that there is a closed-form solution?
$endgroup$
– Mark Viola
Apr 30 '15 at 16:44
$begingroup$
I like obtain closed-form solution. But Do you have any suggestion for approximate solution?
$endgroup$
– Agheli
Apr 30 '15 at 16:57
$begingroup$
I like obtain closed-form solution. But Do you have any suggestion for approximate solution?
$endgroup$
– Agheli
Apr 30 '15 at 16:57
2
2
$begingroup$
@Lucian Yes, and?
$endgroup$
– Did
Apr 30 '15 at 21:47
$begingroup$
@Lucian Yes, and?
$endgroup$
– Did
Apr 30 '15 at 21:47
$begingroup$
If you would be happy with an asymptotic solution, you should take a look at these notes on the WKB technique: w3.pppl.gov/~rwhite/wkb.pdf
$endgroup$
– Josh Burby
Apr 30 '15 at 21:49
$begingroup$
If you would be happy with an asymptotic solution, you should take a look at these notes on the WKB technique: w3.pppl.gov/~rwhite/wkb.pdf
$endgroup$
– Josh Burby
Apr 30 '15 at 21:49
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
One thing you could do is look for a power series solution. This is a linear ODE with an irregular singularity at $x=1$, but if we look for a solution centered at $x=0$, so $|x|<1$, then we should be okay. Note this makes sense to do given where $frac{x}{sqrt{1-x}}$ is defined:
Suppose $y = sum_na_nx^nRightarrow y'' = sum_n n(n-1)a_n x^{n-2}$
Also, $frac{x}{sqrt{1-x}} = sum_{k=0}^infty {-frac{1}{2} choose k} x^{k+1}$, by the binomial series.
Now we can multipy these expressions and solve for the coefficients $a_n$:
$y'' =displaystyle sum_n n(n-1)a_n x^{n-2}=left(displaystylesum_{k=0}^infty {-frac{1}{2} choose k} x^{k+1}right) left(displaystylesum_na_nx^nright)$.
It is messy, but should work out with a bit of computation. Hopefully , it suffices for your needs.
$endgroup$
add a comment |
$begingroup$
Hint:
Let $u=sqrt{1-x}$ ,
Then $dfrac{dy}{dx}=dfrac{dy}{du}dfrac{du}{dx}=-dfrac{1}{2sqrt{1-x}}dfrac{dy}{du}$
$dfrac{d^2y}{dx^2}=dfrac{d}{dx}left(-dfrac{1}{2sqrt{1-x}}dfrac{dy}{du}right)=-dfrac{1}{2sqrt{1-x}}dfrac{d}{dx}left(dfrac{dy}{du}right)+dfrac{1}{4(1-x)^frac{3}{2}}dfrac{dy}{du}=-dfrac{1}{2sqrt{1-x}}dfrac{d}{du}left(dfrac{dy}{du}right)dfrac{du}{dx}+dfrac{1}{4(1-x)^frac{3}{2}}dfrac{dy}{du}=-dfrac{1}{2sqrt{1-x}}dfrac{d^2y}{du^2}left(-dfrac{1}{2sqrt{1-x}}right)+dfrac{1}{4(1-x)^frac{3}{2}}dfrac{dy}{du}=dfrac{1}{4(1-x)}dfrac{d^2y}{du^2}+dfrac{1}{4(1-x)^frac{3}{2}}dfrac{dy}{du}$
$thereforedfrac{1}{4(1-x)}dfrac{d^2y}{du^2}+dfrac{1}{4(1-x)^frac{3}{2}}dfrac{dy}{du}=dfrac{xy}{sqrt{1-x}}$
$dfrac{1}{4u^2}dfrac{d^2y}{du^2}+dfrac{1}{4u^3}dfrac{dy}{du}-dfrac{(1-u^2)y}{u}=0$
$udfrac{d^2y}{du^2}+dfrac{dy}{du}+4u^2(u^2-1)y=0$
Consider generally change the abscissa and the ordinate:
Let $u=f(v)$ ,
Then $dfrac{dy}{du}=dfrac{dfrac{dy}{dv}}{dfrac{du}{dv}}=dfrac{1}{f'(v)}dfrac{dy}{dv}$
$dfrac{d^2y}{du^2}=dfrac{d}{du}left(dfrac{1}{f'(v)}dfrac{dy}{dv}right)=dfrac{dfrac{d}{dv}left(dfrac{1}{f'(v)}dfrac{dy}{dv}right)}{dfrac{du}{dv}}=dfrac{dfrac{1}{f'(v)}dfrac{d^2y}{dv^2}-dfrac{f''(v)}{(f'(v))^2}dfrac{dy}{dv}}{f'(v)}=dfrac{1}{(f'(v))^2}dfrac{d^2y}{dv^2}-dfrac{f''(v)}{(f'(v))^3}dfrac{dy}{dv}$
$thereforedfrac{f(v)}{(f'(v))^2}dfrac{d^2y}{dv^2}-dfrac{f(v)f''(v)}{(f'(v))^3}dfrac{dy}{dv}+dfrac{1}{f'(v)}dfrac{dy}{dv}+4(f(v))^2((f(v))^2-1)y=0$
$dfrac{d^2y}{dv^2}+left(dfrac{f'(v)}{f(v)}-dfrac{f''(v)}{f'(v)}right)dfrac{dy}{dv}+4f(v)((f(v))^2-1)(f'(v))^2y=0$
For example when take $f(v)=dfrac{pv+q}{rv+s}$ , the ODE becomes
$dfrac{d^2y}{dv^2}+left(dfrac{ps-qr}{(pv+q)(rv+s)}+dfrac{2r}{rv+s}right)dfrac{dy}{dv}+dfrac{4(ps-qr)^2(pv+q)((pv+q)^2-(rv+s)^2)}{(rv+s)^7}y=0$
$endgroup$
$begingroup$
Thanks, but I can not solve above your answer.
$endgroup$
– Agheli
May 2 '15 at 6:56
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1259324%2fsolving-differential-equation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
One thing you could do is look for a power series solution. This is a linear ODE with an irregular singularity at $x=1$, but if we look for a solution centered at $x=0$, so $|x|<1$, then we should be okay. Note this makes sense to do given where $frac{x}{sqrt{1-x}}$ is defined:
Suppose $y = sum_na_nx^nRightarrow y'' = sum_n n(n-1)a_n x^{n-2}$
Also, $frac{x}{sqrt{1-x}} = sum_{k=0}^infty {-frac{1}{2} choose k} x^{k+1}$, by the binomial series.
Now we can multipy these expressions and solve for the coefficients $a_n$:
$y'' =displaystyle sum_n n(n-1)a_n x^{n-2}=left(displaystylesum_{k=0}^infty {-frac{1}{2} choose k} x^{k+1}right) left(displaystylesum_na_nx^nright)$.
It is messy, but should work out with a bit of computation. Hopefully , it suffices for your needs.
$endgroup$
add a comment |
$begingroup$
One thing you could do is look for a power series solution. This is a linear ODE with an irregular singularity at $x=1$, but if we look for a solution centered at $x=0$, so $|x|<1$, then we should be okay. Note this makes sense to do given where $frac{x}{sqrt{1-x}}$ is defined:
Suppose $y = sum_na_nx^nRightarrow y'' = sum_n n(n-1)a_n x^{n-2}$
Also, $frac{x}{sqrt{1-x}} = sum_{k=0}^infty {-frac{1}{2} choose k} x^{k+1}$, by the binomial series.
Now we can multipy these expressions and solve for the coefficients $a_n$:
$y'' =displaystyle sum_n n(n-1)a_n x^{n-2}=left(displaystylesum_{k=0}^infty {-frac{1}{2} choose k} x^{k+1}right) left(displaystylesum_na_nx^nright)$.
It is messy, but should work out with a bit of computation. Hopefully , it suffices for your needs.
$endgroup$
add a comment |
$begingroup$
One thing you could do is look for a power series solution. This is a linear ODE with an irregular singularity at $x=1$, but if we look for a solution centered at $x=0$, so $|x|<1$, then we should be okay. Note this makes sense to do given where $frac{x}{sqrt{1-x}}$ is defined:
Suppose $y = sum_na_nx^nRightarrow y'' = sum_n n(n-1)a_n x^{n-2}$
Also, $frac{x}{sqrt{1-x}} = sum_{k=0}^infty {-frac{1}{2} choose k} x^{k+1}$, by the binomial series.
Now we can multipy these expressions and solve for the coefficients $a_n$:
$y'' =displaystyle sum_n n(n-1)a_n x^{n-2}=left(displaystylesum_{k=0}^infty {-frac{1}{2} choose k} x^{k+1}right) left(displaystylesum_na_nx^nright)$.
It is messy, but should work out with a bit of computation. Hopefully , it suffices for your needs.
$endgroup$
One thing you could do is look for a power series solution. This is a linear ODE with an irregular singularity at $x=1$, but if we look for a solution centered at $x=0$, so $|x|<1$, then we should be okay. Note this makes sense to do given where $frac{x}{sqrt{1-x}}$ is defined:
Suppose $y = sum_na_nx^nRightarrow y'' = sum_n n(n-1)a_n x^{n-2}$
Also, $frac{x}{sqrt{1-x}} = sum_{k=0}^infty {-frac{1}{2} choose k} x^{k+1}$, by the binomial series.
Now we can multipy these expressions and solve for the coefficients $a_n$:
$y'' =displaystyle sum_n n(n-1)a_n x^{n-2}=left(displaystylesum_{k=0}^infty {-frac{1}{2} choose k} x^{k+1}right) left(displaystylesum_na_nx^nright)$.
It is messy, but should work out with a bit of computation. Hopefully , it suffices for your needs.
answered May 1 '15 at 11:02
WSLWSL
1,906412
1,906412
add a comment |
add a comment |
$begingroup$
Hint:
Let $u=sqrt{1-x}$ ,
Then $dfrac{dy}{dx}=dfrac{dy}{du}dfrac{du}{dx}=-dfrac{1}{2sqrt{1-x}}dfrac{dy}{du}$
$dfrac{d^2y}{dx^2}=dfrac{d}{dx}left(-dfrac{1}{2sqrt{1-x}}dfrac{dy}{du}right)=-dfrac{1}{2sqrt{1-x}}dfrac{d}{dx}left(dfrac{dy}{du}right)+dfrac{1}{4(1-x)^frac{3}{2}}dfrac{dy}{du}=-dfrac{1}{2sqrt{1-x}}dfrac{d}{du}left(dfrac{dy}{du}right)dfrac{du}{dx}+dfrac{1}{4(1-x)^frac{3}{2}}dfrac{dy}{du}=-dfrac{1}{2sqrt{1-x}}dfrac{d^2y}{du^2}left(-dfrac{1}{2sqrt{1-x}}right)+dfrac{1}{4(1-x)^frac{3}{2}}dfrac{dy}{du}=dfrac{1}{4(1-x)}dfrac{d^2y}{du^2}+dfrac{1}{4(1-x)^frac{3}{2}}dfrac{dy}{du}$
$thereforedfrac{1}{4(1-x)}dfrac{d^2y}{du^2}+dfrac{1}{4(1-x)^frac{3}{2}}dfrac{dy}{du}=dfrac{xy}{sqrt{1-x}}$
$dfrac{1}{4u^2}dfrac{d^2y}{du^2}+dfrac{1}{4u^3}dfrac{dy}{du}-dfrac{(1-u^2)y}{u}=0$
$udfrac{d^2y}{du^2}+dfrac{dy}{du}+4u^2(u^2-1)y=0$
Consider generally change the abscissa and the ordinate:
Let $u=f(v)$ ,
Then $dfrac{dy}{du}=dfrac{dfrac{dy}{dv}}{dfrac{du}{dv}}=dfrac{1}{f'(v)}dfrac{dy}{dv}$
$dfrac{d^2y}{du^2}=dfrac{d}{du}left(dfrac{1}{f'(v)}dfrac{dy}{dv}right)=dfrac{dfrac{d}{dv}left(dfrac{1}{f'(v)}dfrac{dy}{dv}right)}{dfrac{du}{dv}}=dfrac{dfrac{1}{f'(v)}dfrac{d^2y}{dv^2}-dfrac{f''(v)}{(f'(v))^2}dfrac{dy}{dv}}{f'(v)}=dfrac{1}{(f'(v))^2}dfrac{d^2y}{dv^2}-dfrac{f''(v)}{(f'(v))^3}dfrac{dy}{dv}$
$thereforedfrac{f(v)}{(f'(v))^2}dfrac{d^2y}{dv^2}-dfrac{f(v)f''(v)}{(f'(v))^3}dfrac{dy}{dv}+dfrac{1}{f'(v)}dfrac{dy}{dv}+4(f(v))^2((f(v))^2-1)y=0$
$dfrac{d^2y}{dv^2}+left(dfrac{f'(v)}{f(v)}-dfrac{f''(v)}{f'(v)}right)dfrac{dy}{dv}+4f(v)((f(v))^2-1)(f'(v))^2y=0$
For example when take $f(v)=dfrac{pv+q}{rv+s}$ , the ODE becomes
$dfrac{d^2y}{dv^2}+left(dfrac{ps-qr}{(pv+q)(rv+s)}+dfrac{2r}{rv+s}right)dfrac{dy}{dv}+dfrac{4(ps-qr)^2(pv+q)((pv+q)^2-(rv+s)^2)}{(rv+s)^7}y=0$
$endgroup$
$begingroup$
Thanks, but I can not solve above your answer.
$endgroup$
– Agheli
May 2 '15 at 6:56
add a comment |
$begingroup$
Hint:
Let $u=sqrt{1-x}$ ,
Then $dfrac{dy}{dx}=dfrac{dy}{du}dfrac{du}{dx}=-dfrac{1}{2sqrt{1-x}}dfrac{dy}{du}$
$dfrac{d^2y}{dx^2}=dfrac{d}{dx}left(-dfrac{1}{2sqrt{1-x}}dfrac{dy}{du}right)=-dfrac{1}{2sqrt{1-x}}dfrac{d}{dx}left(dfrac{dy}{du}right)+dfrac{1}{4(1-x)^frac{3}{2}}dfrac{dy}{du}=-dfrac{1}{2sqrt{1-x}}dfrac{d}{du}left(dfrac{dy}{du}right)dfrac{du}{dx}+dfrac{1}{4(1-x)^frac{3}{2}}dfrac{dy}{du}=-dfrac{1}{2sqrt{1-x}}dfrac{d^2y}{du^2}left(-dfrac{1}{2sqrt{1-x}}right)+dfrac{1}{4(1-x)^frac{3}{2}}dfrac{dy}{du}=dfrac{1}{4(1-x)}dfrac{d^2y}{du^2}+dfrac{1}{4(1-x)^frac{3}{2}}dfrac{dy}{du}$
$thereforedfrac{1}{4(1-x)}dfrac{d^2y}{du^2}+dfrac{1}{4(1-x)^frac{3}{2}}dfrac{dy}{du}=dfrac{xy}{sqrt{1-x}}$
$dfrac{1}{4u^2}dfrac{d^2y}{du^2}+dfrac{1}{4u^3}dfrac{dy}{du}-dfrac{(1-u^2)y}{u}=0$
$udfrac{d^2y}{du^2}+dfrac{dy}{du}+4u^2(u^2-1)y=0$
Consider generally change the abscissa and the ordinate:
Let $u=f(v)$ ,
Then $dfrac{dy}{du}=dfrac{dfrac{dy}{dv}}{dfrac{du}{dv}}=dfrac{1}{f'(v)}dfrac{dy}{dv}$
$dfrac{d^2y}{du^2}=dfrac{d}{du}left(dfrac{1}{f'(v)}dfrac{dy}{dv}right)=dfrac{dfrac{d}{dv}left(dfrac{1}{f'(v)}dfrac{dy}{dv}right)}{dfrac{du}{dv}}=dfrac{dfrac{1}{f'(v)}dfrac{d^2y}{dv^2}-dfrac{f''(v)}{(f'(v))^2}dfrac{dy}{dv}}{f'(v)}=dfrac{1}{(f'(v))^2}dfrac{d^2y}{dv^2}-dfrac{f''(v)}{(f'(v))^3}dfrac{dy}{dv}$
$thereforedfrac{f(v)}{(f'(v))^2}dfrac{d^2y}{dv^2}-dfrac{f(v)f''(v)}{(f'(v))^3}dfrac{dy}{dv}+dfrac{1}{f'(v)}dfrac{dy}{dv}+4(f(v))^2((f(v))^2-1)y=0$
$dfrac{d^2y}{dv^2}+left(dfrac{f'(v)}{f(v)}-dfrac{f''(v)}{f'(v)}right)dfrac{dy}{dv}+4f(v)((f(v))^2-1)(f'(v))^2y=0$
For example when take $f(v)=dfrac{pv+q}{rv+s}$ , the ODE becomes
$dfrac{d^2y}{dv^2}+left(dfrac{ps-qr}{(pv+q)(rv+s)}+dfrac{2r}{rv+s}right)dfrac{dy}{dv}+dfrac{4(ps-qr)^2(pv+q)((pv+q)^2-(rv+s)^2)}{(rv+s)^7}y=0$
$endgroup$
$begingroup$
Thanks, but I can not solve above your answer.
$endgroup$
– Agheli
May 2 '15 at 6:56
add a comment |
$begingroup$
Hint:
Let $u=sqrt{1-x}$ ,
Then $dfrac{dy}{dx}=dfrac{dy}{du}dfrac{du}{dx}=-dfrac{1}{2sqrt{1-x}}dfrac{dy}{du}$
$dfrac{d^2y}{dx^2}=dfrac{d}{dx}left(-dfrac{1}{2sqrt{1-x}}dfrac{dy}{du}right)=-dfrac{1}{2sqrt{1-x}}dfrac{d}{dx}left(dfrac{dy}{du}right)+dfrac{1}{4(1-x)^frac{3}{2}}dfrac{dy}{du}=-dfrac{1}{2sqrt{1-x}}dfrac{d}{du}left(dfrac{dy}{du}right)dfrac{du}{dx}+dfrac{1}{4(1-x)^frac{3}{2}}dfrac{dy}{du}=-dfrac{1}{2sqrt{1-x}}dfrac{d^2y}{du^2}left(-dfrac{1}{2sqrt{1-x}}right)+dfrac{1}{4(1-x)^frac{3}{2}}dfrac{dy}{du}=dfrac{1}{4(1-x)}dfrac{d^2y}{du^2}+dfrac{1}{4(1-x)^frac{3}{2}}dfrac{dy}{du}$
$thereforedfrac{1}{4(1-x)}dfrac{d^2y}{du^2}+dfrac{1}{4(1-x)^frac{3}{2}}dfrac{dy}{du}=dfrac{xy}{sqrt{1-x}}$
$dfrac{1}{4u^2}dfrac{d^2y}{du^2}+dfrac{1}{4u^3}dfrac{dy}{du}-dfrac{(1-u^2)y}{u}=0$
$udfrac{d^2y}{du^2}+dfrac{dy}{du}+4u^2(u^2-1)y=0$
Consider generally change the abscissa and the ordinate:
Let $u=f(v)$ ,
Then $dfrac{dy}{du}=dfrac{dfrac{dy}{dv}}{dfrac{du}{dv}}=dfrac{1}{f'(v)}dfrac{dy}{dv}$
$dfrac{d^2y}{du^2}=dfrac{d}{du}left(dfrac{1}{f'(v)}dfrac{dy}{dv}right)=dfrac{dfrac{d}{dv}left(dfrac{1}{f'(v)}dfrac{dy}{dv}right)}{dfrac{du}{dv}}=dfrac{dfrac{1}{f'(v)}dfrac{d^2y}{dv^2}-dfrac{f''(v)}{(f'(v))^2}dfrac{dy}{dv}}{f'(v)}=dfrac{1}{(f'(v))^2}dfrac{d^2y}{dv^2}-dfrac{f''(v)}{(f'(v))^3}dfrac{dy}{dv}$
$thereforedfrac{f(v)}{(f'(v))^2}dfrac{d^2y}{dv^2}-dfrac{f(v)f''(v)}{(f'(v))^3}dfrac{dy}{dv}+dfrac{1}{f'(v)}dfrac{dy}{dv}+4(f(v))^2((f(v))^2-1)y=0$
$dfrac{d^2y}{dv^2}+left(dfrac{f'(v)}{f(v)}-dfrac{f''(v)}{f'(v)}right)dfrac{dy}{dv}+4f(v)((f(v))^2-1)(f'(v))^2y=0$
For example when take $f(v)=dfrac{pv+q}{rv+s}$ , the ODE becomes
$dfrac{d^2y}{dv^2}+left(dfrac{ps-qr}{(pv+q)(rv+s)}+dfrac{2r}{rv+s}right)dfrac{dy}{dv}+dfrac{4(ps-qr)^2(pv+q)((pv+q)^2-(rv+s)^2)}{(rv+s)^7}y=0$
$endgroup$
Hint:
Let $u=sqrt{1-x}$ ,
Then $dfrac{dy}{dx}=dfrac{dy}{du}dfrac{du}{dx}=-dfrac{1}{2sqrt{1-x}}dfrac{dy}{du}$
$dfrac{d^2y}{dx^2}=dfrac{d}{dx}left(-dfrac{1}{2sqrt{1-x}}dfrac{dy}{du}right)=-dfrac{1}{2sqrt{1-x}}dfrac{d}{dx}left(dfrac{dy}{du}right)+dfrac{1}{4(1-x)^frac{3}{2}}dfrac{dy}{du}=-dfrac{1}{2sqrt{1-x}}dfrac{d}{du}left(dfrac{dy}{du}right)dfrac{du}{dx}+dfrac{1}{4(1-x)^frac{3}{2}}dfrac{dy}{du}=-dfrac{1}{2sqrt{1-x}}dfrac{d^2y}{du^2}left(-dfrac{1}{2sqrt{1-x}}right)+dfrac{1}{4(1-x)^frac{3}{2}}dfrac{dy}{du}=dfrac{1}{4(1-x)}dfrac{d^2y}{du^2}+dfrac{1}{4(1-x)^frac{3}{2}}dfrac{dy}{du}$
$thereforedfrac{1}{4(1-x)}dfrac{d^2y}{du^2}+dfrac{1}{4(1-x)^frac{3}{2}}dfrac{dy}{du}=dfrac{xy}{sqrt{1-x}}$
$dfrac{1}{4u^2}dfrac{d^2y}{du^2}+dfrac{1}{4u^3}dfrac{dy}{du}-dfrac{(1-u^2)y}{u}=0$
$udfrac{d^2y}{du^2}+dfrac{dy}{du}+4u^2(u^2-1)y=0$
Consider generally change the abscissa and the ordinate:
Let $u=f(v)$ ,
Then $dfrac{dy}{du}=dfrac{dfrac{dy}{dv}}{dfrac{du}{dv}}=dfrac{1}{f'(v)}dfrac{dy}{dv}$
$dfrac{d^2y}{du^2}=dfrac{d}{du}left(dfrac{1}{f'(v)}dfrac{dy}{dv}right)=dfrac{dfrac{d}{dv}left(dfrac{1}{f'(v)}dfrac{dy}{dv}right)}{dfrac{du}{dv}}=dfrac{dfrac{1}{f'(v)}dfrac{d^2y}{dv^2}-dfrac{f''(v)}{(f'(v))^2}dfrac{dy}{dv}}{f'(v)}=dfrac{1}{(f'(v))^2}dfrac{d^2y}{dv^2}-dfrac{f''(v)}{(f'(v))^3}dfrac{dy}{dv}$
$thereforedfrac{f(v)}{(f'(v))^2}dfrac{d^2y}{dv^2}-dfrac{f(v)f''(v)}{(f'(v))^3}dfrac{dy}{dv}+dfrac{1}{f'(v)}dfrac{dy}{dv}+4(f(v))^2((f(v))^2-1)y=0$
$dfrac{d^2y}{dv^2}+left(dfrac{f'(v)}{f(v)}-dfrac{f''(v)}{f'(v)}right)dfrac{dy}{dv}+4f(v)((f(v))^2-1)(f'(v))^2y=0$
For example when take $f(v)=dfrac{pv+q}{rv+s}$ , the ODE becomes
$dfrac{d^2y}{dv^2}+left(dfrac{ps-qr}{(pv+q)(rv+s)}+dfrac{2r}{rv+s}right)dfrac{dy}{dv}+dfrac{4(ps-qr)^2(pv+q)((pv+q)^2-(rv+s)^2)}{(rv+s)^7}y=0$
edited Dec 7 '18 at 12:55
answered May 1 '15 at 16:41
doraemonpauldoraemonpaul
12.6k31660
12.6k31660
$begingroup$
Thanks, but I can not solve above your answer.
$endgroup$
– Agheli
May 2 '15 at 6:56
add a comment |
$begingroup$
Thanks, but I can not solve above your answer.
$endgroup$
– Agheli
May 2 '15 at 6:56
$begingroup$
Thanks, but I can not solve above your answer.
$endgroup$
– Agheli
May 2 '15 at 6:56
$begingroup$
Thanks, but I can not solve above your answer.
$endgroup$
– Agheli
May 2 '15 at 6:56
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1259324%2fsolving-differential-equation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
$dfrac{y''}y=dfrac x{sqrt{1-x}}$
$endgroup$
– Lucian
Apr 30 '15 at 16:26
1
$begingroup$
Do you believe that there is a closed-form solution?
$endgroup$
– Mark Viola
Apr 30 '15 at 16:44
$begingroup$
I like obtain closed-form solution. But Do you have any suggestion for approximate solution?
$endgroup$
– Agheli
Apr 30 '15 at 16:57
2
$begingroup$
@Lucian Yes, and?
$endgroup$
– Did
Apr 30 '15 at 21:47
$begingroup$
If you would be happy with an asymptotic solution, you should take a look at these notes on the WKB technique: w3.pppl.gov/~rwhite/wkb.pdf
$endgroup$
– Josh Burby
Apr 30 '15 at 21:49