How to pass one_hot encoding labels into flow_from_dataframe?
I am using flow_from_dataframe
to pass in my images to the generator. However I worked using cifar10 data. In the flow from dataframe method there is a parameter "y_col"
that needs to be set which contains the column for the labels. I am having my file as the following.
Name 1 2 3 4 5 6 7 8 9 10 11 12 13 14
00001522_000.png 0 0 0 0 0 0 0 0 0 0 0 0 0 0
00023313_000.png 1 0 0 0 0 0 0 0 0 0 0 0 0 0
00023313_001.png 0 0 0 0 0 0 0 0 0 0 0 0 0 0
00023313_002.png 0 0 1 0 0 0 0 1 0 0 1 0 0 0
If we look at it the last image falls into multiple classes.
Now the file with which I learnt the method, the file looks like the following:
id,label
1,frog
2,truck
3,truck
4,deer
Below is the code I have used
import pandas as pd
df=pd.read_csv(r".train.csv")
datagen=ImageDataGenerator(rescale=1./255)
train_generator=datagen.flow_from_dataframe(dataframe=df,directory=".train_imgs", x_col="id", y_col="label", has_ext=False, class_mode="categorical", target_size=(32,32), batch_size=32)
model = Sequential()
model.add(Conv2D(32, (3, 3), padding='same',
input_shape=(32,32,3)))
model.add(Activation('relu'))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(64, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))
model.compile(optimizers.rmsprop(lr=0.0001,loss="categorical_crossentropy", metrics=["accuracy"])
STEP_SIZE_TRAIN=train_generator.n//train_generator.batch_size
STEP_SIZE_VALID=valid_generator.n//valid_generator.batch_size
model.fit_generator(generator=train_generator,
steps_per_epoch=STEP_SIZE_TRAIN,
validation_data=valid_generator,
validation_steps=STEP_SIZE_VALID,
epochs=10)
How can I arrange my label columns so that there can be a single column for the "y_col"
parameter just like the second file. Or is there any other of of without changing the labels I can pass it into the y_col
?
python keras neural-network deep-learning
add a comment |
I am using flow_from_dataframe
to pass in my images to the generator. However I worked using cifar10 data. In the flow from dataframe method there is a parameter "y_col"
that needs to be set which contains the column for the labels. I am having my file as the following.
Name 1 2 3 4 5 6 7 8 9 10 11 12 13 14
00001522_000.png 0 0 0 0 0 0 0 0 0 0 0 0 0 0
00023313_000.png 1 0 0 0 0 0 0 0 0 0 0 0 0 0
00023313_001.png 0 0 0 0 0 0 0 0 0 0 0 0 0 0
00023313_002.png 0 0 1 0 0 0 0 1 0 0 1 0 0 0
If we look at it the last image falls into multiple classes.
Now the file with which I learnt the method, the file looks like the following:
id,label
1,frog
2,truck
3,truck
4,deer
Below is the code I have used
import pandas as pd
df=pd.read_csv(r".train.csv")
datagen=ImageDataGenerator(rescale=1./255)
train_generator=datagen.flow_from_dataframe(dataframe=df,directory=".train_imgs", x_col="id", y_col="label", has_ext=False, class_mode="categorical", target_size=(32,32), batch_size=32)
model = Sequential()
model.add(Conv2D(32, (3, 3), padding='same',
input_shape=(32,32,3)))
model.add(Activation('relu'))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(64, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))
model.compile(optimizers.rmsprop(lr=0.0001,loss="categorical_crossentropy", metrics=["accuracy"])
STEP_SIZE_TRAIN=train_generator.n//train_generator.batch_size
STEP_SIZE_VALID=valid_generator.n//valid_generator.batch_size
model.fit_generator(generator=train_generator,
steps_per_epoch=STEP_SIZE_TRAIN,
validation_data=valid_generator,
validation_steps=STEP_SIZE_VALID,
epochs=10)
How can I arrange my label columns so that there can be a single column for the "y_col"
parameter just like the second file. Or is there any other of of without changing the labels I can pass it into the y_col
?
python keras neural-network deep-learning
add a comment |
I am using flow_from_dataframe
to pass in my images to the generator. However I worked using cifar10 data. In the flow from dataframe method there is a parameter "y_col"
that needs to be set which contains the column for the labels. I am having my file as the following.
Name 1 2 3 4 5 6 7 8 9 10 11 12 13 14
00001522_000.png 0 0 0 0 0 0 0 0 0 0 0 0 0 0
00023313_000.png 1 0 0 0 0 0 0 0 0 0 0 0 0 0
00023313_001.png 0 0 0 0 0 0 0 0 0 0 0 0 0 0
00023313_002.png 0 0 1 0 0 0 0 1 0 0 1 0 0 0
If we look at it the last image falls into multiple classes.
Now the file with which I learnt the method, the file looks like the following:
id,label
1,frog
2,truck
3,truck
4,deer
Below is the code I have used
import pandas as pd
df=pd.read_csv(r".train.csv")
datagen=ImageDataGenerator(rescale=1./255)
train_generator=datagen.flow_from_dataframe(dataframe=df,directory=".train_imgs", x_col="id", y_col="label", has_ext=False, class_mode="categorical", target_size=(32,32), batch_size=32)
model = Sequential()
model.add(Conv2D(32, (3, 3), padding='same',
input_shape=(32,32,3)))
model.add(Activation('relu'))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(64, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))
model.compile(optimizers.rmsprop(lr=0.0001,loss="categorical_crossentropy", metrics=["accuracy"])
STEP_SIZE_TRAIN=train_generator.n//train_generator.batch_size
STEP_SIZE_VALID=valid_generator.n//valid_generator.batch_size
model.fit_generator(generator=train_generator,
steps_per_epoch=STEP_SIZE_TRAIN,
validation_data=valid_generator,
validation_steps=STEP_SIZE_VALID,
epochs=10)
How can I arrange my label columns so that there can be a single column for the "y_col"
parameter just like the second file. Or is there any other of of without changing the labels I can pass it into the y_col
?
python keras neural-network deep-learning
I am using flow_from_dataframe
to pass in my images to the generator. However I worked using cifar10 data. In the flow from dataframe method there is a parameter "y_col"
that needs to be set which contains the column for the labels. I am having my file as the following.
Name 1 2 3 4 5 6 7 8 9 10 11 12 13 14
00001522_000.png 0 0 0 0 0 0 0 0 0 0 0 0 0 0
00023313_000.png 1 0 0 0 0 0 0 0 0 0 0 0 0 0
00023313_001.png 0 0 0 0 0 0 0 0 0 0 0 0 0 0
00023313_002.png 0 0 1 0 0 0 0 1 0 0 1 0 0 0
If we look at it the last image falls into multiple classes.
Now the file with which I learnt the method, the file looks like the following:
id,label
1,frog
2,truck
3,truck
4,deer
Below is the code I have used
import pandas as pd
df=pd.read_csv(r".train.csv")
datagen=ImageDataGenerator(rescale=1./255)
train_generator=datagen.flow_from_dataframe(dataframe=df,directory=".train_imgs", x_col="id", y_col="label", has_ext=False, class_mode="categorical", target_size=(32,32), batch_size=32)
model = Sequential()
model.add(Conv2D(32, (3, 3), padding='same',
input_shape=(32,32,3)))
model.add(Activation('relu'))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(64, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))
model.compile(optimizers.rmsprop(lr=0.0001,loss="categorical_crossentropy", metrics=["accuracy"])
STEP_SIZE_TRAIN=train_generator.n//train_generator.batch_size
STEP_SIZE_VALID=valid_generator.n//valid_generator.batch_size
model.fit_generator(generator=train_generator,
steps_per_epoch=STEP_SIZE_TRAIN,
validation_data=valid_generator,
validation_steps=STEP_SIZE_VALID,
epochs=10)
How can I arrange my label columns so that there can be a single column for the "y_col"
parameter just like the second file. Or is there any other of of without changing the labels I can pass it into the y_col
?
python keras neural-network deep-learning
python keras neural-network deep-learning
edited Nov 21 '18 at 16:45
Souradip Roy
asked Nov 19 '18 at 21:11
Souradip RoySouradip Roy
184
184
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53382694%2fhow-to-pass-one-hot-encoding-labels-into-flow-from-dataframe%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53382694%2fhow-to-pass-one-hot-encoding-labels-into-flow-from-dataframe%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown