Problem 4 Barry Simon a comprehensive course in analysis part 1.
up vote
1
down vote
favorite
(a) For any bounded Baire function, $f$, on a compact Hausdorff space $X$, prove that $||f||_{infty}:=infleft{sup_x |g(x)|: f-g=0text{ for a.e. } xright}$ exists, defines a seminorm, and equals $sup_{x} |f(x)|$ if $fin C(X)$. Prove that
$||f||_{infty}=supleft{a:mu(left{x:|f(x)|>aright})>0right}$
(b) For any bounded Baire function $f$ and any $mu_{l}$ for normalized positive functional $l$, we have that
$|l(f)|leq ||f||_{infty}$
(c) If $f_n,f$ are Bounded Baire functions and $||f_n-f||_{infty}to 0$, prov that $l(f)to l(f_n)$.
For b) I have: $|f|leq |f|_{infty}$ then $|l(f)|leq l(|f|)leq ||f||_{infty}l(1)=||f||_{infty}$ because $l$ is normalized.
For c) I have, Using (b), $|l(f-f_n)|leq ||f-f_n||_{infty}to 0 $
How prove $||f||_{infty}:=infleft{sup_x |g(x)|: f-g=0text{ for a.e. } xright}$ exists? Some hint?
functional-analysis analysis measure-theory baire-category
add a comment |
up vote
1
down vote
favorite
(a) For any bounded Baire function, $f$, on a compact Hausdorff space $X$, prove that $||f||_{infty}:=infleft{sup_x |g(x)|: f-g=0text{ for a.e. } xright}$ exists, defines a seminorm, and equals $sup_{x} |f(x)|$ if $fin C(X)$. Prove that
$||f||_{infty}=supleft{a:mu(left{x:|f(x)|>aright})>0right}$
(b) For any bounded Baire function $f$ and any $mu_{l}$ for normalized positive functional $l$, we have that
$|l(f)|leq ||f||_{infty}$
(c) If $f_n,f$ are Bounded Baire functions and $||f_n-f||_{infty}to 0$, prov that $l(f)to l(f_n)$.
For b) I have: $|f|leq |f|_{infty}$ then $|l(f)|leq l(|f|)leq ||f||_{infty}l(1)=||f||_{infty}$ because $l$ is normalized.
For c) I have, Using (b), $|l(f-f_n)|leq ||f-f_n||_{infty}to 0 $
How prove $||f||_{infty}:=infleft{sup_x |g(x)|: f-g=0text{ for a.e. } xright}$ exists? Some hint?
functional-analysis analysis measure-theory baire-category
add a comment |
up vote
1
down vote
favorite
up vote
1
down vote
favorite
(a) For any bounded Baire function, $f$, on a compact Hausdorff space $X$, prove that $||f||_{infty}:=infleft{sup_x |g(x)|: f-g=0text{ for a.e. } xright}$ exists, defines a seminorm, and equals $sup_{x} |f(x)|$ if $fin C(X)$. Prove that
$||f||_{infty}=supleft{a:mu(left{x:|f(x)|>aright})>0right}$
(b) For any bounded Baire function $f$ and any $mu_{l}$ for normalized positive functional $l$, we have that
$|l(f)|leq ||f||_{infty}$
(c) If $f_n,f$ are Bounded Baire functions and $||f_n-f||_{infty}to 0$, prov that $l(f)to l(f_n)$.
For b) I have: $|f|leq |f|_{infty}$ then $|l(f)|leq l(|f|)leq ||f||_{infty}l(1)=||f||_{infty}$ because $l$ is normalized.
For c) I have, Using (b), $|l(f-f_n)|leq ||f-f_n||_{infty}to 0 $
How prove $||f||_{infty}:=infleft{sup_x |g(x)|: f-g=0text{ for a.e. } xright}$ exists? Some hint?
functional-analysis analysis measure-theory baire-category
(a) For any bounded Baire function, $f$, on a compact Hausdorff space $X$, prove that $||f||_{infty}:=infleft{sup_x |g(x)|: f-g=0text{ for a.e. } xright}$ exists, defines a seminorm, and equals $sup_{x} |f(x)|$ if $fin C(X)$. Prove that
$||f||_{infty}=supleft{a:mu(left{x:|f(x)|>aright})>0right}$
(b) For any bounded Baire function $f$ and any $mu_{l}$ for normalized positive functional $l$, we have that
$|l(f)|leq ||f||_{infty}$
(c) If $f_n,f$ are Bounded Baire functions and $||f_n-f||_{infty}to 0$, prov that $l(f)to l(f_n)$.
For b) I have: $|f|leq |f|_{infty}$ then $|l(f)|leq l(|f|)leq ||f||_{infty}l(1)=||f||_{infty}$ because $l$ is normalized.
For c) I have, Using (b), $|l(f-f_n)|leq ||f-f_n||_{infty}to 0 $
How prove $||f||_{infty}:=infleft{sup_x |g(x)|: f-g=0text{ for a.e. } xright}$ exists? Some hint?
functional-analysis analysis measure-theory baire-category
functional-analysis analysis measure-theory baire-category
edited Nov 14 at 13:36
Davide Giraudo
123k16149253
123k16149253
asked Nov 13 at 1:50
eraldcoil
21519
21519
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
up vote
2
down vote
It is obvious that $f=g$ a.e. implies $|f(y)| leq sup_x|g(x)|$ a.e. so $|f(y)| leq RHS$ a.e. Hence LHS $leq $RHS. On the other hand if $g(x)=f(x)$ when $|f(x)| leq |f|_{infty}$ and $0$ otherwise then $f=g$ a.e. and $sup_x|g(x)| leq |f|_{infty}$ so RHS $leq$ LHS.
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
2
down vote
It is obvious that $f=g$ a.e. implies $|f(y)| leq sup_x|g(x)|$ a.e. so $|f(y)| leq RHS$ a.e. Hence LHS $leq $RHS. On the other hand if $g(x)=f(x)$ when $|f(x)| leq |f|_{infty}$ and $0$ otherwise then $f=g$ a.e. and $sup_x|g(x)| leq |f|_{infty}$ so RHS $leq$ LHS.
add a comment |
up vote
2
down vote
It is obvious that $f=g$ a.e. implies $|f(y)| leq sup_x|g(x)|$ a.e. so $|f(y)| leq RHS$ a.e. Hence LHS $leq $RHS. On the other hand if $g(x)=f(x)$ when $|f(x)| leq |f|_{infty}$ and $0$ otherwise then $f=g$ a.e. and $sup_x|g(x)| leq |f|_{infty}$ so RHS $leq$ LHS.
add a comment |
up vote
2
down vote
up vote
2
down vote
It is obvious that $f=g$ a.e. implies $|f(y)| leq sup_x|g(x)|$ a.e. so $|f(y)| leq RHS$ a.e. Hence LHS $leq $RHS. On the other hand if $g(x)=f(x)$ when $|f(x)| leq |f|_{infty}$ and $0$ otherwise then $f=g$ a.e. and $sup_x|g(x)| leq |f|_{infty}$ so RHS $leq$ LHS.
It is obvious that $f=g$ a.e. implies $|f(y)| leq sup_x|g(x)|$ a.e. so $|f(y)| leq RHS$ a.e. Hence LHS $leq $RHS. On the other hand if $g(x)=f(x)$ when $|f(x)| leq |f|_{infty}$ and $0$ otherwise then $f=g$ a.e. and $sup_x|g(x)| leq |f|_{infty}$ so RHS $leq$ LHS.
answered Nov 13 at 5:25
Kavi Rama Murthy
40.4k31751
40.4k31751
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2996172%2fproblem-4-barry-simon-a-comprehensive-course-in-analysis-part-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown