If the norm of an element over a subgroup of the Galois group of a Galois extension is $1$, then so is the...











up vote
0
down vote

favorite












Let $mathbb E/mathbb F$ be a finite Galois extension with Galois group $G$. If $H$ is a subgroup of $G$, then let $N_H(x):=prod_{sigmain H}sigma(x), forall xin mathbb E$. Notice that if $mathbb K$ is the fixed field of $H$, then $H=Gal(mathbb E/mathbb K)$, and then $N_H$ is just the usual norm $N_{mathbb E/mathbb K}$.



Then how to prove that :



If there exists a subgroup $H$ of $G$ and $ain mathbb E$ such that $N_H(a)=1$, then $N_G(a)=1$ ?










share|cite|improve this question


















  • 1




    $N_G(x) = prod_{sigma in G/H}sigma( N_H(x))$ where $G = bigcup_{sigma in G/H} sigma H$ (disjoint union). Also $N_G = N_{G/H} circ N_H$ where $N_H = N_{E/ E^H}$ and $N_{G/H} = N_{E^H/ E^G}$
    – reuns
    Nov 13 at 0:18

















up vote
0
down vote

favorite












Let $mathbb E/mathbb F$ be a finite Galois extension with Galois group $G$. If $H$ is a subgroup of $G$, then let $N_H(x):=prod_{sigmain H}sigma(x), forall xin mathbb E$. Notice that if $mathbb K$ is the fixed field of $H$, then $H=Gal(mathbb E/mathbb K)$, and then $N_H$ is just the usual norm $N_{mathbb E/mathbb K}$.



Then how to prove that :



If there exists a subgroup $H$ of $G$ and $ain mathbb E$ such that $N_H(a)=1$, then $N_G(a)=1$ ?










share|cite|improve this question


















  • 1




    $N_G(x) = prod_{sigma in G/H}sigma( N_H(x))$ where $G = bigcup_{sigma in G/H} sigma H$ (disjoint union). Also $N_G = N_{G/H} circ N_H$ where $N_H = N_{E/ E^H}$ and $N_{G/H} = N_{E^H/ E^G}$
    – reuns
    Nov 13 at 0:18















up vote
0
down vote

favorite









up vote
0
down vote

favorite











Let $mathbb E/mathbb F$ be a finite Galois extension with Galois group $G$. If $H$ is a subgroup of $G$, then let $N_H(x):=prod_{sigmain H}sigma(x), forall xin mathbb E$. Notice that if $mathbb K$ is the fixed field of $H$, then $H=Gal(mathbb E/mathbb K)$, and then $N_H$ is just the usual norm $N_{mathbb E/mathbb K}$.



Then how to prove that :



If there exists a subgroup $H$ of $G$ and $ain mathbb E$ such that $N_H(a)=1$, then $N_G(a)=1$ ?










share|cite|improve this question













Let $mathbb E/mathbb F$ be a finite Galois extension with Galois group $G$. If $H$ is a subgroup of $G$, then let $N_H(x):=prod_{sigmain H}sigma(x), forall xin mathbb E$. Notice that if $mathbb K$ is the fixed field of $H$, then $H=Gal(mathbb E/mathbb K)$, and then $N_H$ is just the usual norm $N_{mathbb E/mathbb K}$.



Then how to prove that :



If there exists a subgroup $H$ of $G$ and $ain mathbb E$ such that $N_H(a)=1$, then $N_G(a)=1$ ?







field-theory galois-theory extension-field galois-extensions






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Nov 12 at 23:48









user521337

486113




486113








  • 1




    $N_G(x) = prod_{sigma in G/H}sigma( N_H(x))$ where $G = bigcup_{sigma in G/H} sigma H$ (disjoint union). Also $N_G = N_{G/H} circ N_H$ where $N_H = N_{E/ E^H}$ and $N_{G/H} = N_{E^H/ E^G}$
    – reuns
    Nov 13 at 0:18
















  • 1




    $N_G(x) = prod_{sigma in G/H}sigma( N_H(x))$ where $G = bigcup_{sigma in G/H} sigma H$ (disjoint union). Also $N_G = N_{G/H} circ N_H$ where $N_H = N_{E/ E^H}$ and $N_{G/H} = N_{E^H/ E^G}$
    – reuns
    Nov 13 at 0:18










1




1




$N_G(x) = prod_{sigma in G/H}sigma( N_H(x))$ where $G = bigcup_{sigma in G/H} sigma H$ (disjoint union). Also $N_G = N_{G/H} circ N_H$ where $N_H = N_{E/ E^H}$ and $N_{G/H} = N_{E^H/ E^G}$
– reuns
Nov 13 at 0:18






$N_G(x) = prod_{sigma in G/H}sigma( N_H(x))$ where $G = bigcup_{sigma in G/H} sigma H$ (disjoint union). Also $N_G = N_{G/H} circ N_H$ where $N_H = N_{E/ E^H}$ and $N_{G/H} = N_{E^H/ E^G}$
– reuns
Nov 13 at 0:18

















active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














 

draft saved


draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2996068%2fif-the-norm-of-an-element-over-a-subgroup-of-the-galois-group-of-a-galois-extens%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown






























active

oldest

votes













active

oldest

votes









active

oldest

votes






active

oldest

votes
















 

draft saved


draft discarded



















































 


draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2996068%2fif-the-norm-of-an-element-over-a-subgroup-of-the-galois-group-of-a-galois-extens%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

How to change which sound is reproduced for terminal bell?

Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents

Can I use Tabulator js library in my java Spring + Thymeleaf project?