If the norm of an element over a subgroup of the Galois group of a Galois extension is $1$, then so is the...
up vote
0
down vote
favorite
Let $mathbb E/mathbb F$ be a finite Galois extension with Galois group $G$. If $H$ is a subgroup of $G$, then let $N_H(x):=prod_{sigmain H}sigma(x), forall xin mathbb E$. Notice that if $mathbb K$ is the fixed field of $H$, then $H=Gal(mathbb E/mathbb K)$, and then $N_H$ is just the usual norm $N_{mathbb E/mathbb K}$.
Then how to prove that :
If there exists a subgroup $H$ of $G$ and $ain mathbb E$ such that $N_H(a)=1$, then $N_G(a)=1$ ?
field-theory galois-theory extension-field galois-extensions
add a comment |
up vote
0
down vote
favorite
Let $mathbb E/mathbb F$ be a finite Galois extension with Galois group $G$. If $H$ is a subgroup of $G$, then let $N_H(x):=prod_{sigmain H}sigma(x), forall xin mathbb E$. Notice that if $mathbb K$ is the fixed field of $H$, then $H=Gal(mathbb E/mathbb K)$, and then $N_H$ is just the usual norm $N_{mathbb E/mathbb K}$.
Then how to prove that :
If there exists a subgroup $H$ of $G$ and $ain mathbb E$ such that $N_H(a)=1$, then $N_G(a)=1$ ?
field-theory galois-theory extension-field galois-extensions
1
$N_G(x) = prod_{sigma in G/H}sigma( N_H(x))$ where $G = bigcup_{sigma in G/H} sigma H$ (disjoint union). Also $N_G = N_{G/H} circ N_H$ where $N_H = N_{E/ E^H}$ and $N_{G/H} = N_{E^H/ E^G}$
– reuns
Nov 13 at 0:18
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Let $mathbb E/mathbb F$ be a finite Galois extension with Galois group $G$. If $H$ is a subgroup of $G$, then let $N_H(x):=prod_{sigmain H}sigma(x), forall xin mathbb E$. Notice that if $mathbb K$ is the fixed field of $H$, then $H=Gal(mathbb E/mathbb K)$, and then $N_H$ is just the usual norm $N_{mathbb E/mathbb K}$.
Then how to prove that :
If there exists a subgroup $H$ of $G$ and $ain mathbb E$ such that $N_H(a)=1$, then $N_G(a)=1$ ?
field-theory galois-theory extension-field galois-extensions
Let $mathbb E/mathbb F$ be a finite Galois extension with Galois group $G$. If $H$ is a subgroup of $G$, then let $N_H(x):=prod_{sigmain H}sigma(x), forall xin mathbb E$. Notice that if $mathbb K$ is the fixed field of $H$, then $H=Gal(mathbb E/mathbb K)$, and then $N_H$ is just the usual norm $N_{mathbb E/mathbb K}$.
Then how to prove that :
If there exists a subgroup $H$ of $G$ and $ain mathbb E$ such that $N_H(a)=1$, then $N_G(a)=1$ ?
field-theory galois-theory extension-field galois-extensions
field-theory galois-theory extension-field galois-extensions
asked Nov 12 at 23:48
user521337
486113
486113
1
$N_G(x) = prod_{sigma in G/H}sigma( N_H(x))$ where $G = bigcup_{sigma in G/H} sigma H$ (disjoint union). Also $N_G = N_{G/H} circ N_H$ where $N_H = N_{E/ E^H}$ and $N_{G/H} = N_{E^H/ E^G}$
– reuns
Nov 13 at 0:18
add a comment |
1
$N_G(x) = prod_{sigma in G/H}sigma( N_H(x))$ where $G = bigcup_{sigma in G/H} sigma H$ (disjoint union). Also $N_G = N_{G/H} circ N_H$ where $N_H = N_{E/ E^H}$ and $N_{G/H} = N_{E^H/ E^G}$
– reuns
Nov 13 at 0:18
1
1
$N_G(x) = prod_{sigma in G/H}sigma( N_H(x))$ where $G = bigcup_{sigma in G/H} sigma H$ (disjoint union). Also $N_G = N_{G/H} circ N_H$ where $N_H = N_{E/ E^H}$ and $N_{G/H} = N_{E^H/ E^G}$
– reuns
Nov 13 at 0:18
$N_G(x) = prod_{sigma in G/H}sigma( N_H(x))$ where $G = bigcup_{sigma in G/H} sigma H$ (disjoint union). Also $N_G = N_{G/H} circ N_H$ where $N_H = N_{E/ E^H}$ and $N_{G/H} = N_{E^H/ E^G}$
– reuns
Nov 13 at 0:18
add a comment |
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2996068%2fif-the-norm-of-an-element-over-a-subgroup-of-the-galois-group-of-a-galois-extens%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$N_G(x) = prod_{sigma in G/H}sigma( N_H(x))$ where $G = bigcup_{sigma in G/H} sigma H$ (disjoint union). Also $N_G = N_{G/H} circ N_H$ where $N_H = N_{E/ E^H}$ and $N_{G/H} = N_{E^H/ E^G}$
– reuns
Nov 13 at 0:18