Almost sure convergence of $|X_n|/n$ for a sequence of i.i.d r.v.'s











up vote
1
down vote

favorite
1













Let ${X_n: n ge 1}$ be a sequence of i.i.d random variables with $mathbb{E}[|X_1|] < infty$, and $mathbb{E}[X_1] neq 0$. Show that $$frac{|X_n|}{n} to 0 quad text{almost surely.}$$
Use this result to show $$frac{max_{1le k le n}|X_k|}{S_n} to 0 quad text{almost surely,}$$ where $S_n := sum_{j=1}^n X_j$.




To show the first part, I tried to prove the equivalent result that $$forall epsilon>0 quad mathbb{P}left(frac{|X_n|}{n} > epsilon quad text{i.o.}right) = 0,$$ which seemingly suggests the use of BC (1 or 2) lemma. The naive use of BC1 leads to nowhere since $$sum_{n=1}^{infty} mathbb{P}left(frac{|X_n|}{n} > epsilonright)le sum_{n=1}^{infty}frac{mathbb{E}[|X_n|]}{nepsilon} = frac{mathbb{E}[|X_1|]}{epsilon} sum_{n=1}^{infty} frac{1}{n} = infty,$$
(which needs $<infty$ to work). I also tried to use BC2:
$$sum_{n=1}^{infty} mathbb{P}left(frac{|X_n|}{n} le epsilonright) = sum_{n=1}^{infty} left(1- mathbb{P}left(frac{|X_n|}{n} > epsilonright)right)$$
$$= lim_{M to infty} M - sum_{n=1}^{M} mathbb{P}left(frac{|X_n|}{n} > epsilonright)ge lim_{M to infty} M - frac{mathbb{E}[|X_1|]}{epsilon} sum_{n=1}^{M} frac{1}{n} = infty, $$
which results in $mathbb{P}left(frac{|X_n|}{n} le epsilon quad text{i.o.}right) = 1,$
again not helpful.



How can I crack the first part and also any idea for the second part is appreciated.










share|cite|improve this question


























    up vote
    1
    down vote

    favorite
    1













    Let ${X_n: n ge 1}$ be a sequence of i.i.d random variables with $mathbb{E}[|X_1|] < infty$, and $mathbb{E}[X_1] neq 0$. Show that $$frac{|X_n|}{n} to 0 quad text{almost surely.}$$
    Use this result to show $$frac{max_{1le k le n}|X_k|}{S_n} to 0 quad text{almost surely,}$$ where $S_n := sum_{j=1}^n X_j$.




    To show the first part, I tried to prove the equivalent result that $$forall epsilon>0 quad mathbb{P}left(frac{|X_n|}{n} > epsilon quad text{i.o.}right) = 0,$$ which seemingly suggests the use of BC (1 or 2) lemma. The naive use of BC1 leads to nowhere since $$sum_{n=1}^{infty} mathbb{P}left(frac{|X_n|}{n} > epsilonright)le sum_{n=1}^{infty}frac{mathbb{E}[|X_n|]}{nepsilon} = frac{mathbb{E}[|X_1|]}{epsilon} sum_{n=1}^{infty} frac{1}{n} = infty,$$
    (which needs $<infty$ to work). I also tried to use BC2:
    $$sum_{n=1}^{infty} mathbb{P}left(frac{|X_n|}{n} le epsilonright) = sum_{n=1}^{infty} left(1- mathbb{P}left(frac{|X_n|}{n} > epsilonright)right)$$
    $$= lim_{M to infty} M - sum_{n=1}^{M} mathbb{P}left(frac{|X_n|}{n} > epsilonright)ge lim_{M to infty} M - frac{mathbb{E}[|X_1|]}{epsilon} sum_{n=1}^{M} frac{1}{n} = infty, $$
    which results in $mathbb{P}left(frac{|X_n|}{n} le epsilon quad text{i.o.}right) = 1,$
    again not helpful.



    How can I crack the first part and also any idea for the second part is appreciated.










    share|cite|improve this question
























      up vote
      1
      down vote

      favorite
      1









      up vote
      1
      down vote

      favorite
      1






      1






      Let ${X_n: n ge 1}$ be a sequence of i.i.d random variables with $mathbb{E}[|X_1|] < infty$, and $mathbb{E}[X_1] neq 0$. Show that $$frac{|X_n|}{n} to 0 quad text{almost surely.}$$
      Use this result to show $$frac{max_{1le k le n}|X_k|}{S_n} to 0 quad text{almost surely,}$$ where $S_n := sum_{j=1}^n X_j$.




      To show the first part, I tried to prove the equivalent result that $$forall epsilon>0 quad mathbb{P}left(frac{|X_n|}{n} > epsilon quad text{i.o.}right) = 0,$$ which seemingly suggests the use of BC (1 or 2) lemma. The naive use of BC1 leads to nowhere since $$sum_{n=1}^{infty} mathbb{P}left(frac{|X_n|}{n} > epsilonright)le sum_{n=1}^{infty}frac{mathbb{E}[|X_n|]}{nepsilon} = frac{mathbb{E}[|X_1|]}{epsilon} sum_{n=1}^{infty} frac{1}{n} = infty,$$
      (which needs $<infty$ to work). I also tried to use BC2:
      $$sum_{n=1}^{infty} mathbb{P}left(frac{|X_n|}{n} le epsilonright) = sum_{n=1}^{infty} left(1- mathbb{P}left(frac{|X_n|}{n} > epsilonright)right)$$
      $$= lim_{M to infty} M - sum_{n=1}^{M} mathbb{P}left(frac{|X_n|}{n} > epsilonright)ge lim_{M to infty} M - frac{mathbb{E}[|X_1|]}{epsilon} sum_{n=1}^{M} frac{1}{n} = infty, $$
      which results in $mathbb{P}left(frac{|X_n|}{n} le epsilon quad text{i.o.}right) = 1,$
      again not helpful.



      How can I crack the first part and also any idea for the second part is appreciated.










      share|cite|improve this question














      Let ${X_n: n ge 1}$ be a sequence of i.i.d random variables with $mathbb{E}[|X_1|] < infty$, and $mathbb{E}[X_1] neq 0$. Show that $$frac{|X_n|}{n} to 0 quad text{almost surely.}$$
      Use this result to show $$frac{max_{1le k le n}|X_k|}{S_n} to 0 quad text{almost surely,}$$ where $S_n := sum_{j=1}^n X_j$.




      To show the first part, I tried to prove the equivalent result that $$forall epsilon>0 quad mathbb{P}left(frac{|X_n|}{n} > epsilon quad text{i.o.}right) = 0,$$ which seemingly suggests the use of BC (1 or 2) lemma. The naive use of BC1 leads to nowhere since $$sum_{n=1}^{infty} mathbb{P}left(frac{|X_n|}{n} > epsilonright)le sum_{n=1}^{infty}frac{mathbb{E}[|X_n|]}{nepsilon} = frac{mathbb{E}[|X_1|]}{epsilon} sum_{n=1}^{infty} frac{1}{n} = infty,$$
      (which needs $<infty$ to work). I also tried to use BC2:
      $$sum_{n=1}^{infty} mathbb{P}left(frac{|X_n|}{n} le epsilonright) = sum_{n=1}^{infty} left(1- mathbb{P}left(frac{|X_n|}{n} > epsilonright)right)$$
      $$= lim_{M to infty} M - sum_{n=1}^{M} mathbb{P}left(frac{|X_n|}{n} > epsilonright)ge lim_{M to infty} M - frac{mathbb{E}[|X_1|]}{epsilon} sum_{n=1}^{M} frac{1}{n} = infty, $$
      which results in $mathbb{P}left(frac{|X_n|}{n} le epsilon quad text{i.o.}right) = 1,$
      again not helpful.



      How can I crack the first part and also any idea for the second part is appreciated.







      probability-theory convergence borel-cantelli-lemmas






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Nov 13 at 22:30









      math_enthuthiast

      14910




      14910






















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          2
          down vote



          accepted










          It is standard result that if $Y$ is a non-negative random variable then $sum_n P{Y>n} <infty$ iff $EY<infty$. Taking $Y=frac {|X_1|} {epsilon}$ we get $sum P{|X_n| >nepsilon }=sum P{|X_1| >nepsilon }<infty$. Apply Borel Cantelli Lemma and let $epsilon to 0$ through the sequence $1,frac 1 2,frac 1 3,cdots$ to see that $frac {|X_n|} n to 0$ almost surely. If $a_n geq 0$ and $frac {a_n} n to 0$ then $frac {max {a_1,a_2,cdots,a_n}} n to 0$. Now write $frac {max {|X_1|,|X_2|,cdots, |X_n|}} {S_n}$ as $frac {max {|X_1|,|X_2|,cdots, |X_n|}} n times frac n {S_n}$ and apply SLLN.






          share|cite|improve this answer





















            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














             

            draft saved


            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2997438%2falmost-sure-convergence-of-x-n-n-for-a-sequence-of-i-i-d-r-v-s%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            2
            down vote



            accepted










            It is standard result that if $Y$ is a non-negative random variable then $sum_n P{Y>n} <infty$ iff $EY<infty$. Taking $Y=frac {|X_1|} {epsilon}$ we get $sum P{|X_n| >nepsilon }=sum P{|X_1| >nepsilon }<infty$. Apply Borel Cantelli Lemma and let $epsilon to 0$ through the sequence $1,frac 1 2,frac 1 3,cdots$ to see that $frac {|X_n|} n to 0$ almost surely. If $a_n geq 0$ and $frac {a_n} n to 0$ then $frac {max {a_1,a_2,cdots,a_n}} n to 0$. Now write $frac {max {|X_1|,|X_2|,cdots, |X_n|}} {S_n}$ as $frac {max {|X_1|,|X_2|,cdots, |X_n|}} n times frac n {S_n}$ and apply SLLN.






            share|cite|improve this answer

























              up vote
              2
              down vote



              accepted










              It is standard result that if $Y$ is a non-negative random variable then $sum_n P{Y>n} <infty$ iff $EY<infty$. Taking $Y=frac {|X_1|} {epsilon}$ we get $sum P{|X_n| >nepsilon }=sum P{|X_1| >nepsilon }<infty$. Apply Borel Cantelli Lemma and let $epsilon to 0$ through the sequence $1,frac 1 2,frac 1 3,cdots$ to see that $frac {|X_n|} n to 0$ almost surely. If $a_n geq 0$ and $frac {a_n} n to 0$ then $frac {max {a_1,a_2,cdots,a_n}} n to 0$. Now write $frac {max {|X_1|,|X_2|,cdots, |X_n|}} {S_n}$ as $frac {max {|X_1|,|X_2|,cdots, |X_n|}} n times frac n {S_n}$ and apply SLLN.






              share|cite|improve this answer























                up vote
                2
                down vote



                accepted







                up vote
                2
                down vote



                accepted






                It is standard result that if $Y$ is a non-negative random variable then $sum_n P{Y>n} <infty$ iff $EY<infty$. Taking $Y=frac {|X_1|} {epsilon}$ we get $sum P{|X_n| >nepsilon }=sum P{|X_1| >nepsilon }<infty$. Apply Borel Cantelli Lemma and let $epsilon to 0$ through the sequence $1,frac 1 2,frac 1 3,cdots$ to see that $frac {|X_n|} n to 0$ almost surely. If $a_n geq 0$ and $frac {a_n} n to 0$ then $frac {max {a_1,a_2,cdots,a_n}} n to 0$. Now write $frac {max {|X_1|,|X_2|,cdots, |X_n|}} {S_n}$ as $frac {max {|X_1|,|X_2|,cdots, |X_n|}} n times frac n {S_n}$ and apply SLLN.






                share|cite|improve this answer












                It is standard result that if $Y$ is a non-negative random variable then $sum_n P{Y>n} <infty$ iff $EY<infty$. Taking $Y=frac {|X_1|} {epsilon}$ we get $sum P{|X_n| >nepsilon }=sum P{|X_1| >nepsilon }<infty$. Apply Borel Cantelli Lemma and let $epsilon to 0$ through the sequence $1,frac 1 2,frac 1 3,cdots$ to see that $frac {|X_n|} n to 0$ almost surely. If $a_n geq 0$ and $frac {a_n} n to 0$ then $frac {max {a_1,a_2,cdots,a_n}} n to 0$. Now write $frac {max {|X_1|,|X_2|,cdots, |X_n|}} {S_n}$ as $frac {max {|X_1|,|X_2|,cdots, |X_n|}} n times frac n {S_n}$ and apply SLLN.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Nov 13 at 23:30









                Kavi Rama Murthy

                41.4k31751




                41.4k31751






























                     

                    draft saved


                    draft discarded



















































                     


                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2997438%2falmost-sure-convergence-of-x-n-n-for-a-sequence-of-i-i-d-r-v-s%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    How to change which sound is reproduced for terminal bell?

                    Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents

                    Can I use Tabulator js library in my java Spring + Thymeleaf project?