How to derive a bound of distortion / error between two different tensor decompositions.
$begingroup$
Consider a tensor $mathcal{X}inmathbb{R}^{Itimes Jtimes K} $. It can be approximately decomposed/factored in multiple ways. Namely by using the TUCKER3 decomposition:
$mathcal{X}approx sum_{p=1}^Psum_{q=1}^Qsum_{r=1}^Rmathcal{G}_{pqr}mathbf{a}_pcircmathbf{b}_qcircmathbf{c}_r $,
where $mathcal{G}in mathbb{R}^{Ptimes Qtimes R}$ is a core mixing tensor, and $mathbf{a}_p,mathbf{b}_q,mathbf{c}_r$ are vectors from $mathbf{A}inmathbb{R}^{Itimes P},mathbf{B}inmathbb{R}^{Jtimes Q},mathbf{C}inmathbb{R}^{Ktimes R}$, and $circ$ denotes the outer product.
Now if the data tensor, $mathcal{X}$ can be assumed tri-linear in some $mathbf{A,B,C}$ components, a simpler decomposition is given by the CP-deomposition:
$mathcal{X}approx sum_{r=1}^R lambda_r cdot mathbf{a}_rcircmathbf{b}_rcircmathbf{c}_r $.
Now the question:
I know my data tensor $mathcal{X}$ is not trilinear in nature, but I wish to decompose it with the CP method anyway. After this decomp. I will use the $mathbf{C}$ matrix for a clustering problem. Is there anyway to derive some maths (e.g. bounds) for how much error/distortion I can expect if use elements of the $mathbf{C}$ from the CP decomposition, instead of the TUCKER3 which is theoretically "more suitable" for my tensor.
vector-spaces norm tensors tensor-rank
$endgroup$
add a comment |
$begingroup$
Consider a tensor $mathcal{X}inmathbb{R}^{Itimes Jtimes K} $. It can be approximately decomposed/factored in multiple ways. Namely by using the TUCKER3 decomposition:
$mathcal{X}approx sum_{p=1}^Psum_{q=1}^Qsum_{r=1}^Rmathcal{G}_{pqr}mathbf{a}_pcircmathbf{b}_qcircmathbf{c}_r $,
where $mathcal{G}in mathbb{R}^{Ptimes Qtimes R}$ is a core mixing tensor, and $mathbf{a}_p,mathbf{b}_q,mathbf{c}_r$ are vectors from $mathbf{A}inmathbb{R}^{Itimes P},mathbf{B}inmathbb{R}^{Jtimes Q},mathbf{C}inmathbb{R}^{Ktimes R}$, and $circ$ denotes the outer product.
Now if the data tensor, $mathcal{X}$ can be assumed tri-linear in some $mathbf{A,B,C}$ components, a simpler decomposition is given by the CP-deomposition:
$mathcal{X}approx sum_{r=1}^R lambda_r cdot mathbf{a}_rcircmathbf{b}_rcircmathbf{c}_r $.
Now the question:
I know my data tensor $mathcal{X}$ is not trilinear in nature, but I wish to decompose it with the CP method anyway. After this decomp. I will use the $mathbf{C}$ matrix for a clustering problem. Is there anyway to derive some maths (e.g. bounds) for how much error/distortion I can expect if use elements of the $mathbf{C}$ from the CP decomposition, instead of the TUCKER3 which is theoretically "more suitable" for my tensor.
vector-spaces norm tensors tensor-rank
$endgroup$
add a comment |
$begingroup$
Consider a tensor $mathcal{X}inmathbb{R}^{Itimes Jtimes K} $. It can be approximately decomposed/factored in multiple ways. Namely by using the TUCKER3 decomposition:
$mathcal{X}approx sum_{p=1}^Psum_{q=1}^Qsum_{r=1}^Rmathcal{G}_{pqr}mathbf{a}_pcircmathbf{b}_qcircmathbf{c}_r $,
where $mathcal{G}in mathbb{R}^{Ptimes Qtimes R}$ is a core mixing tensor, and $mathbf{a}_p,mathbf{b}_q,mathbf{c}_r$ are vectors from $mathbf{A}inmathbb{R}^{Itimes P},mathbf{B}inmathbb{R}^{Jtimes Q},mathbf{C}inmathbb{R}^{Ktimes R}$, and $circ$ denotes the outer product.
Now if the data tensor, $mathcal{X}$ can be assumed tri-linear in some $mathbf{A,B,C}$ components, a simpler decomposition is given by the CP-deomposition:
$mathcal{X}approx sum_{r=1}^R lambda_r cdot mathbf{a}_rcircmathbf{b}_rcircmathbf{c}_r $.
Now the question:
I know my data tensor $mathcal{X}$ is not trilinear in nature, but I wish to decompose it with the CP method anyway. After this decomp. I will use the $mathbf{C}$ matrix for a clustering problem. Is there anyway to derive some maths (e.g. bounds) for how much error/distortion I can expect if use elements of the $mathbf{C}$ from the CP decomposition, instead of the TUCKER3 which is theoretically "more suitable" for my tensor.
vector-spaces norm tensors tensor-rank
$endgroup$
Consider a tensor $mathcal{X}inmathbb{R}^{Itimes Jtimes K} $. It can be approximately decomposed/factored in multiple ways. Namely by using the TUCKER3 decomposition:
$mathcal{X}approx sum_{p=1}^Psum_{q=1}^Qsum_{r=1}^Rmathcal{G}_{pqr}mathbf{a}_pcircmathbf{b}_qcircmathbf{c}_r $,
where $mathcal{G}in mathbb{R}^{Ptimes Qtimes R}$ is a core mixing tensor, and $mathbf{a}_p,mathbf{b}_q,mathbf{c}_r$ are vectors from $mathbf{A}inmathbb{R}^{Itimes P},mathbf{B}inmathbb{R}^{Jtimes Q},mathbf{C}inmathbb{R}^{Ktimes R}$, and $circ$ denotes the outer product.
Now if the data tensor, $mathcal{X}$ can be assumed tri-linear in some $mathbf{A,B,C}$ components, a simpler decomposition is given by the CP-deomposition:
$mathcal{X}approx sum_{r=1}^R lambda_r cdot mathbf{a}_rcircmathbf{b}_rcircmathbf{c}_r $.
Now the question:
I know my data tensor $mathcal{X}$ is not trilinear in nature, but I wish to decompose it with the CP method anyway. After this decomp. I will use the $mathbf{C}$ matrix for a clustering problem. Is there anyway to derive some maths (e.g. bounds) for how much error/distortion I can expect if use elements of the $mathbf{C}$ from the CP decomposition, instead of the TUCKER3 which is theoretically "more suitable" for my tensor.
vector-spaces norm tensors tensor-rank
vector-spaces norm tensors tensor-rank
asked Jan 2 at 9:24
pche8701pche8701
135
135
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059275%2fhow-to-derive-a-bound-of-distortion-error-between-two-different-tensor-decompo%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059275%2fhow-to-derive-a-bound-of-distortion-error-between-two-different-tensor-decompo%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown