Determinant of a matrix that contains the first $n^2$ primes.












22












$begingroup$


Let $n$ be an integer and $p_1,ldots,p_{n^2}$ be the first prime numbers. Writing them down in a matrix
$$
left(begin{matrix}
p_1 & p_2 & cdots & p_n \
p_{n+1} & p_{n+2} & cdots & p_{2n} \
vdots & vdots & ddots & vdots \
cdots & cdots & cdots & p_{n^2}
end{matrix}
right)
$$
we can take the determinant. How to prove that determinant is not zero for every $n$?










share|cite|improve this question











$endgroup$








  • 4




    $begingroup$
    The sequence of determinants is OEIS sequence A067276. Not that this helps...
    $endgroup$
    – Robert Israel
    Jul 12 '17 at 7:11






  • 11




    $begingroup$
    I think this is going to be an intractable problem. Note that there are square matrices with determinant $0$ made up of distinct primes, e.g. $$pmatrix{2 & 3 & 5cr 7 & 11 & 13cr 19 & 23 & 97cr}$$ Thus you somehow have to depend on the fact that you're using the consecutive primes. And those just don't have enough regularity.
    $endgroup$
    – Robert Israel
    Jul 12 '17 at 15:03






  • 4




    $begingroup$
    Also with determinant $0$: $$ pmatrix{2 & 3 & 5 & 7cr 11 & 13 & 17 & 19cr 23 & 29 & 31 & 37cr 41 & 47 & 67 & 73cr }$$
    $endgroup$
    – Robert Israel
    Jul 12 '17 at 15:12






  • 1




    $begingroup$
    @Robert Israel thank you for these examples. Indeed, this makes it harder to prove and there might be some evil matrix around which determinant goes to zero :-) I looked up the prime factors of the determinants but did not find any pattern. There are large powers of 2 appearing in the factorization, but there not even increasing monotonely.
    $endgroup$
    – Rofl Ukulus
    Jul 12 '17 at 17:01






  • 1




    $begingroup$
    At $n= 460$ the determinant has $1001$ digits. I was making a b-file for sequence A067276, and the OEIS doesn't like numbers with more than $999$ digits. I could go further, but computations start to slow down...
    $endgroup$
    – Robert Israel
    Jul 13 '17 at 14:34
















22












$begingroup$


Let $n$ be an integer and $p_1,ldots,p_{n^2}$ be the first prime numbers. Writing them down in a matrix
$$
left(begin{matrix}
p_1 & p_2 & cdots & p_n \
p_{n+1} & p_{n+2} & cdots & p_{2n} \
vdots & vdots & ddots & vdots \
cdots & cdots & cdots & p_{n^2}
end{matrix}
right)
$$
we can take the determinant. How to prove that determinant is not zero for every $n$?










share|cite|improve this question











$endgroup$








  • 4




    $begingroup$
    The sequence of determinants is OEIS sequence A067276. Not that this helps...
    $endgroup$
    – Robert Israel
    Jul 12 '17 at 7:11






  • 11




    $begingroup$
    I think this is going to be an intractable problem. Note that there are square matrices with determinant $0$ made up of distinct primes, e.g. $$pmatrix{2 & 3 & 5cr 7 & 11 & 13cr 19 & 23 & 97cr}$$ Thus you somehow have to depend on the fact that you're using the consecutive primes. And those just don't have enough regularity.
    $endgroup$
    – Robert Israel
    Jul 12 '17 at 15:03






  • 4




    $begingroup$
    Also with determinant $0$: $$ pmatrix{2 & 3 & 5 & 7cr 11 & 13 & 17 & 19cr 23 & 29 & 31 & 37cr 41 & 47 & 67 & 73cr }$$
    $endgroup$
    – Robert Israel
    Jul 12 '17 at 15:12






  • 1




    $begingroup$
    @Robert Israel thank you for these examples. Indeed, this makes it harder to prove and there might be some evil matrix around which determinant goes to zero :-) I looked up the prime factors of the determinants but did not find any pattern. There are large powers of 2 appearing in the factorization, but there not even increasing monotonely.
    $endgroup$
    – Rofl Ukulus
    Jul 12 '17 at 17:01






  • 1




    $begingroup$
    At $n= 460$ the determinant has $1001$ digits. I was making a b-file for sequence A067276, and the OEIS doesn't like numbers with more than $999$ digits. I could go further, but computations start to slow down...
    $endgroup$
    – Robert Israel
    Jul 13 '17 at 14:34














22












22








22


8



$begingroup$


Let $n$ be an integer and $p_1,ldots,p_{n^2}$ be the first prime numbers. Writing them down in a matrix
$$
left(begin{matrix}
p_1 & p_2 & cdots & p_n \
p_{n+1} & p_{n+2} & cdots & p_{2n} \
vdots & vdots & ddots & vdots \
cdots & cdots & cdots & p_{n^2}
end{matrix}
right)
$$
we can take the determinant. How to prove that determinant is not zero for every $n$?










share|cite|improve this question











$endgroup$




Let $n$ be an integer and $p_1,ldots,p_{n^2}$ be the first prime numbers. Writing them down in a matrix
$$
left(begin{matrix}
p_1 & p_2 & cdots & p_n \
p_{n+1} & p_{n+2} & cdots & p_{2n} \
vdots & vdots & ddots & vdots \
cdots & cdots & cdots & p_{n^2}
end{matrix}
right)
$$
we can take the determinant. How to prove that determinant is not zero for every $n$?







linear-algebra number-theory prime-numbers determinant






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jul 12 '17 at 20:22









Davide Giraudo

128k17157268




128k17157268










asked Jul 12 '17 at 6:55









Rofl UkulusRofl Ukulus

1646




1646








  • 4




    $begingroup$
    The sequence of determinants is OEIS sequence A067276. Not that this helps...
    $endgroup$
    – Robert Israel
    Jul 12 '17 at 7:11






  • 11




    $begingroup$
    I think this is going to be an intractable problem. Note that there are square matrices with determinant $0$ made up of distinct primes, e.g. $$pmatrix{2 & 3 & 5cr 7 & 11 & 13cr 19 & 23 & 97cr}$$ Thus you somehow have to depend on the fact that you're using the consecutive primes. And those just don't have enough regularity.
    $endgroup$
    – Robert Israel
    Jul 12 '17 at 15:03






  • 4




    $begingroup$
    Also with determinant $0$: $$ pmatrix{2 & 3 & 5 & 7cr 11 & 13 & 17 & 19cr 23 & 29 & 31 & 37cr 41 & 47 & 67 & 73cr }$$
    $endgroup$
    – Robert Israel
    Jul 12 '17 at 15:12






  • 1




    $begingroup$
    @Robert Israel thank you for these examples. Indeed, this makes it harder to prove and there might be some evil matrix around which determinant goes to zero :-) I looked up the prime factors of the determinants but did not find any pattern. There are large powers of 2 appearing in the factorization, but there not even increasing monotonely.
    $endgroup$
    – Rofl Ukulus
    Jul 12 '17 at 17:01






  • 1




    $begingroup$
    At $n= 460$ the determinant has $1001$ digits. I was making a b-file for sequence A067276, and the OEIS doesn't like numbers with more than $999$ digits. I could go further, but computations start to slow down...
    $endgroup$
    – Robert Israel
    Jul 13 '17 at 14:34














  • 4




    $begingroup$
    The sequence of determinants is OEIS sequence A067276. Not that this helps...
    $endgroup$
    – Robert Israel
    Jul 12 '17 at 7:11






  • 11




    $begingroup$
    I think this is going to be an intractable problem. Note that there are square matrices with determinant $0$ made up of distinct primes, e.g. $$pmatrix{2 & 3 & 5cr 7 & 11 & 13cr 19 & 23 & 97cr}$$ Thus you somehow have to depend on the fact that you're using the consecutive primes. And those just don't have enough regularity.
    $endgroup$
    – Robert Israel
    Jul 12 '17 at 15:03






  • 4




    $begingroup$
    Also with determinant $0$: $$ pmatrix{2 & 3 & 5 & 7cr 11 & 13 & 17 & 19cr 23 & 29 & 31 & 37cr 41 & 47 & 67 & 73cr }$$
    $endgroup$
    – Robert Israel
    Jul 12 '17 at 15:12






  • 1




    $begingroup$
    @Robert Israel thank you for these examples. Indeed, this makes it harder to prove and there might be some evil matrix around which determinant goes to zero :-) I looked up the prime factors of the determinants but did not find any pattern. There are large powers of 2 appearing in the factorization, but there not even increasing monotonely.
    $endgroup$
    – Rofl Ukulus
    Jul 12 '17 at 17:01






  • 1




    $begingroup$
    At $n= 460$ the determinant has $1001$ digits. I was making a b-file for sequence A067276, and the OEIS doesn't like numbers with more than $999$ digits. I could go further, but computations start to slow down...
    $endgroup$
    – Robert Israel
    Jul 13 '17 at 14:34








4




4




$begingroup$
The sequence of determinants is OEIS sequence A067276. Not that this helps...
$endgroup$
– Robert Israel
Jul 12 '17 at 7:11




$begingroup$
The sequence of determinants is OEIS sequence A067276. Not that this helps...
$endgroup$
– Robert Israel
Jul 12 '17 at 7:11




11




11




$begingroup$
I think this is going to be an intractable problem. Note that there are square matrices with determinant $0$ made up of distinct primes, e.g. $$pmatrix{2 & 3 & 5cr 7 & 11 & 13cr 19 & 23 & 97cr}$$ Thus you somehow have to depend on the fact that you're using the consecutive primes. And those just don't have enough regularity.
$endgroup$
– Robert Israel
Jul 12 '17 at 15:03




$begingroup$
I think this is going to be an intractable problem. Note that there are square matrices with determinant $0$ made up of distinct primes, e.g. $$pmatrix{2 & 3 & 5cr 7 & 11 & 13cr 19 & 23 & 97cr}$$ Thus you somehow have to depend on the fact that you're using the consecutive primes. And those just don't have enough regularity.
$endgroup$
– Robert Israel
Jul 12 '17 at 15:03




4




4




$begingroup$
Also with determinant $0$: $$ pmatrix{2 & 3 & 5 & 7cr 11 & 13 & 17 & 19cr 23 & 29 & 31 & 37cr 41 & 47 & 67 & 73cr }$$
$endgroup$
– Robert Israel
Jul 12 '17 at 15:12




$begingroup$
Also with determinant $0$: $$ pmatrix{2 & 3 & 5 & 7cr 11 & 13 & 17 & 19cr 23 & 29 & 31 & 37cr 41 & 47 & 67 & 73cr }$$
$endgroup$
– Robert Israel
Jul 12 '17 at 15:12




1




1




$begingroup$
@Robert Israel thank you for these examples. Indeed, this makes it harder to prove and there might be some evil matrix around which determinant goes to zero :-) I looked up the prime factors of the determinants but did not find any pattern. There are large powers of 2 appearing in the factorization, but there not even increasing monotonely.
$endgroup$
– Rofl Ukulus
Jul 12 '17 at 17:01




$begingroup$
@Robert Israel thank you for these examples. Indeed, this makes it harder to prove and there might be some evil matrix around which determinant goes to zero :-) I looked up the prime factors of the determinants but did not find any pattern. There are large powers of 2 appearing in the factorization, but there not even increasing monotonely.
$endgroup$
– Rofl Ukulus
Jul 12 '17 at 17:01




1




1




$begingroup$
At $n= 460$ the determinant has $1001$ digits. I was making a b-file for sequence A067276, and the OEIS doesn't like numbers with more than $999$ digits. I could go further, but computations start to slow down...
$endgroup$
– Robert Israel
Jul 13 '17 at 14:34




$begingroup$
At $n= 460$ the determinant has $1001$ digits. I was making a b-file for sequence A067276, and the OEIS doesn't like numbers with more than $999$ digits. I could go further, but computations start to slow down...
$endgroup$
– Robert Israel
Jul 13 '17 at 14:34










0






active

oldest

votes












Your Answer








StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2355787%2fdeterminant-of-a-matrix-that-contains-the-first-n2-primes%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2355787%2fdeterminant-of-a-matrix-that-contains-the-first-n2-primes%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

How to change which sound is reproduced for terminal bell?

Can I use Tabulator js library in my java Spring + Thymeleaf project?

Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents