Looking for another way to calculate the integral $iint_{D}{sin(x)e^{sin(x)sin(y)}}text{d}A$
$begingroup$
Here, I have a little unpleasant way to calculate the following double integral
$$iint_{D}{sin(x)e^{sin(x)sin(y)}}text{d}A$$
where $D$ is the square area $D={(x,y)inmathbb{R}^2: 0 le x le pi/2, 0 le y le pi/2}$
my attempt:
with the symmetry of the area we know
$$I=iint_{D}{sin(x)e^{sin(x)sin(y)}}text{d}A=iint_{D}{sin(y)e^{sin(x)sin(y)}}text{d}A$$
thus
$$I=frac1{2}iint_{D}{(sin(x)+sin(y))e^{sin(x)sin(y)}}text{d}A$$
with the substitution $u=sin(x)$ and $v=sin(y)$, we have
$$I=frac1{2}iint_{D^{*}}{frac{u+v}{sqrt{(1-u^2)(1-v^2)}}e^{uv}}text{d}A$$
and now the integral area is $D^{*}={(u,v)inmathbb{R}^2: 0 le u le 1, 0 le v le 1}$
notice that the function $frac{u+v}{sqrt{(1-u^2)(1-v^2)}}e^{uv}$ also holds a symmetric form, thus
$$I=iint_{D^{*}cap(ule v)}{frac{u+v}{sqrt{(1-u^2)(1-v^2)}}e^{uv}}text{d}A=iint_{D^{*}cap(uge v)}{frac{u+v}{sqrt{(1-u^2)(1-v^2)}}e^{uv}}text{d}A$$
so I can only foucs on area $D^{*}cap(uge v)$, set another substitution
$$u+v=alpha$$
$$uv=beta$$
under the condition $uge v$, the determinant of Jacobian matrix writes
$$|J(alpha,beta)|=frac1{sqrt{alpha^2-4beta}}$$
and
$$frac1{sqrt{(1-u^2)(1-v^2)}}=frac1{sqrt{(1+beta)^2-alpha^2}}$$
the integral area change to ${(alpha,beta)inmathbb{R}^2: 2sqrt{beta} le alpha le 1+beta, 0 le beta le 1}$, so
$$begin{align}
I&=int_{0}^{1}int_{2sqrt{beta}}^{1+beta}{frac{alpha}{sqrt{((1+beta)^2-alpha^2)(alpha^2-4beta)}}e^{beta}}text{d}alpha text{d}beta
\&=int_{0}^{1}left(-tan^{-1}sqrt{frac{(1+beta)^2-alpha^2}{alpha^2-4beta}}right)biggr|_{alpha=2sqrt{beta}}^{1+beta} e^{beta}text{d}beta
\&=frac{pi}{2}(e-1)
end{align}$$
obviously, I choose an inconvenient way in the second half of this calculation, but I still can not come up with another good method.
thanks in advance for any suggestion!
calculus multivariable-calculus
$endgroup$
add a comment |
$begingroup$
Here, I have a little unpleasant way to calculate the following double integral
$$iint_{D}{sin(x)e^{sin(x)sin(y)}}text{d}A$$
where $D$ is the square area $D={(x,y)inmathbb{R}^2: 0 le x le pi/2, 0 le y le pi/2}$
my attempt:
with the symmetry of the area we know
$$I=iint_{D}{sin(x)e^{sin(x)sin(y)}}text{d}A=iint_{D}{sin(y)e^{sin(x)sin(y)}}text{d}A$$
thus
$$I=frac1{2}iint_{D}{(sin(x)+sin(y))e^{sin(x)sin(y)}}text{d}A$$
with the substitution $u=sin(x)$ and $v=sin(y)$, we have
$$I=frac1{2}iint_{D^{*}}{frac{u+v}{sqrt{(1-u^2)(1-v^2)}}e^{uv}}text{d}A$$
and now the integral area is $D^{*}={(u,v)inmathbb{R}^2: 0 le u le 1, 0 le v le 1}$
notice that the function $frac{u+v}{sqrt{(1-u^2)(1-v^2)}}e^{uv}$ also holds a symmetric form, thus
$$I=iint_{D^{*}cap(ule v)}{frac{u+v}{sqrt{(1-u^2)(1-v^2)}}e^{uv}}text{d}A=iint_{D^{*}cap(uge v)}{frac{u+v}{sqrt{(1-u^2)(1-v^2)}}e^{uv}}text{d}A$$
so I can only foucs on area $D^{*}cap(uge v)$, set another substitution
$$u+v=alpha$$
$$uv=beta$$
under the condition $uge v$, the determinant of Jacobian matrix writes
$$|J(alpha,beta)|=frac1{sqrt{alpha^2-4beta}}$$
and
$$frac1{sqrt{(1-u^2)(1-v^2)}}=frac1{sqrt{(1+beta)^2-alpha^2}}$$
the integral area change to ${(alpha,beta)inmathbb{R}^2: 2sqrt{beta} le alpha le 1+beta, 0 le beta le 1}$, so
$$begin{align}
I&=int_{0}^{1}int_{2sqrt{beta}}^{1+beta}{frac{alpha}{sqrt{((1+beta)^2-alpha^2)(alpha^2-4beta)}}e^{beta}}text{d}alpha text{d}beta
\&=int_{0}^{1}left(-tan^{-1}sqrt{frac{(1+beta)^2-alpha^2}{alpha^2-4beta}}right)biggr|_{alpha=2sqrt{beta}}^{1+beta} e^{beta}text{d}beta
\&=frac{pi}{2}(e-1)
end{align}$$
obviously, I choose an inconvenient way in the second half of this calculation, but I still can not come up with another good method.
thanks in advance for any suggestion!
calculus multivariable-calculus
$endgroup$
add a comment |
$begingroup$
Here, I have a little unpleasant way to calculate the following double integral
$$iint_{D}{sin(x)e^{sin(x)sin(y)}}text{d}A$$
where $D$ is the square area $D={(x,y)inmathbb{R}^2: 0 le x le pi/2, 0 le y le pi/2}$
my attempt:
with the symmetry of the area we know
$$I=iint_{D}{sin(x)e^{sin(x)sin(y)}}text{d}A=iint_{D}{sin(y)e^{sin(x)sin(y)}}text{d}A$$
thus
$$I=frac1{2}iint_{D}{(sin(x)+sin(y))e^{sin(x)sin(y)}}text{d}A$$
with the substitution $u=sin(x)$ and $v=sin(y)$, we have
$$I=frac1{2}iint_{D^{*}}{frac{u+v}{sqrt{(1-u^2)(1-v^2)}}e^{uv}}text{d}A$$
and now the integral area is $D^{*}={(u,v)inmathbb{R}^2: 0 le u le 1, 0 le v le 1}$
notice that the function $frac{u+v}{sqrt{(1-u^2)(1-v^2)}}e^{uv}$ also holds a symmetric form, thus
$$I=iint_{D^{*}cap(ule v)}{frac{u+v}{sqrt{(1-u^2)(1-v^2)}}e^{uv}}text{d}A=iint_{D^{*}cap(uge v)}{frac{u+v}{sqrt{(1-u^2)(1-v^2)}}e^{uv}}text{d}A$$
so I can only foucs on area $D^{*}cap(uge v)$, set another substitution
$$u+v=alpha$$
$$uv=beta$$
under the condition $uge v$, the determinant of Jacobian matrix writes
$$|J(alpha,beta)|=frac1{sqrt{alpha^2-4beta}}$$
and
$$frac1{sqrt{(1-u^2)(1-v^2)}}=frac1{sqrt{(1+beta)^2-alpha^2}}$$
the integral area change to ${(alpha,beta)inmathbb{R}^2: 2sqrt{beta} le alpha le 1+beta, 0 le beta le 1}$, so
$$begin{align}
I&=int_{0}^{1}int_{2sqrt{beta}}^{1+beta}{frac{alpha}{sqrt{((1+beta)^2-alpha^2)(alpha^2-4beta)}}e^{beta}}text{d}alpha text{d}beta
\&=int_{0}^{1}left(-tan^{-1}sqrt{frac{(1+beta)^2-alpha^2}{alpha^2-4beta}}right)biggr|_{alpha=2sqrt{beta}}^{1+beta} e^{beta}text{d}beta
\&=frac{pi}{2}(e-1)
end{align}$$
obviously, I choose an inconvenient way in the second half of this calculation, but I still can not come up with another good method.
thanks in advance for any suggestion!
calculus multivariable-calculus
$endgroup$
Here, I have a little unpleasant way to calculate the following double integral
$$iint_{D}{sin(x)e^{sin(x)sin(y)}}text{d}A$$
where $D$ is the square area $D={(x,y)inmathbb{R}^2: 0 le x le pi/2, 0 le y le pi/2}$
my attempt:
with the symmetry of the area we know
$$I=iint_{D}{sin(x)e^{sin(x)sin(y)}}text{d}A=iint_{D}{sin(y)e^{sin(x)sin(y)}}text{d}A$$
thus
$$I=frac1{2}iint_{D}{(sin(x)+sin(y))e^{sin(x)sin(y)}}text{d}A$$
with the substitution $u=sin(x)$ and $v=sin(y)$, we have
$$I=frac1{2}iint_{D^{*}}{frac{u+v}{sqrt{(1-u^2)(1-v^2)}}e^{uv}}text{d}A$$
and now the integral area is $D^{*}={(u,v)inmathbb{R}^2: 0 le u le 1, 0 le v le 1}$
notice that the function $frac{u+v}{sqrt{(1-u^2)(1-v^2)}}e^{uv}$ also holds a symmetric form, thus
$$I=iint_{D^{*}cap(ule v)}{frac{u+v}{sqrt{(1-u^2)(1-v^2)}}e^{uv}}text{d}A=iint_{D^{*}cap(uge v)}{frac{u+v}{sqrt{(1-u^2)(1-v^2)}}e^{uv}}text{d}A$$
so I can only foucs on area $D^{*}cap(uge v)$, set another substitution
$$u+v=alpha$$
$$uv=beta$$
under the condition $uge v$, the determinant of Jacobian matrix writes
$$|J(alpha,beta)|=frac1{sqrt{alpha^2-4beta}}$$
and
$$frac1{sqrt{(1-u^2)(1-v^2)}}=frac1{sqrt{(1+beta)^2-alpha^2}}$$
the integral area change to ${(alpha,beta)inmathbb{R}^2: 2sqrt{beta} le alpha le 1+beta, 0 le beta le 1}$, so
$$begin{align}
I&=int_{0}^{1}int_{2sqrt{beta}}^{1+beta}{frac{alpha}{sqrt{((1+beta)^2-alpha^2)(alpha^2-4beta)}}e^{beta}}text{d}alpha text{d}beta
\&=int_{0}^{1}left(-tan^{-1}sqrt{frac{(1+beta)^2-alpha^2}{alpha^2-4beta}}right)biggr|_{alpha=2sqrt{beta}}^{1+beta} e^{beta}text{d}beta
\&=frac{pi}{2}(e-1)
end{align}$$
obviously, I choose an inconvenient way in the second half of this calculation, but I still can not come up with another good method.
thanks in advance for any suggestion!
calculus multivariable-calculus
calculus multivariable-calculus
asked Dec 9 '18 at 14:57
NanayajitzukiNanayajitzuki
3285
3285
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Using the Taylor expansion of the exponential
$$
iint_{D}{sin(x)e^{sin(x)sin(y)}}text{d}A=sum_{kgeq 0}frac{1}{k!}int_0^{pi/2}mathrm{d}x~(sin x)^{k+1}int_0^{pi/2}mathrm{d}y~(sin y)^{k}=sum_{kgeq 0}frac{1}{k!}I(k)I(k+1) ,
$$
where
$$
I(k)=int_0^{pi/2}mathrm{d}x~(sin x)^{k}=int_0^1mathrm{du}~u^k(1-u^2)^{-1/2}=frac{sqrt{pi}~Gamma left(frac{k+1}{2}right)}{2 Gamma left(frac{k}{2}+1right)} .
$$
Therefore
$$
frac{1}{k!}I(k)I(k+1)=frac{left(sqrt{pi } Gamma left(frac{k+1}{2}right)right) left(sqrt{pi } Gamma left(frac{k}{2}+1right)right)}{k! left(2 Gamma left(frac{k}{2}+1right)right) left(2 Gamma left(frac{k+3}{2}right)right)}=frac{pi }{2 Gamma (k+2)}
$$
after simplifications, which then leads to
$$
sum_{kgeq 0}frac{1}{k!}I(k)I(k+1)=frac{1}{2} (e-1) pi .
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3032466%2flooking-for-another-way-to-calculate-the-integral-iint-d-sinxe-sinx-s%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Using the Taylor expansion of the exponential
$$
iint_{D}{sin(x)e^{sin(x)sin(y)}}text{d}A=sum_{kgeq 0}frac{1}{k!}int_0^{pi/2}mathrm{d}x~(sin x)^{k+1}int_0^{pi/2}mathrm{d}y~(sin y)^{k}=sum_{kgeq 0}frac{1}{k!}I(k)I(k+1) ,
$$
where
$$
I(k)=int_0^{pi/2}mathrm{d}x~(sin x)^{k}=int_0^1mathrm{du}~u^k(1-u^2)^{-1/2}=frac{sqrt{pi}~Gamma left(frac{k+1}{2}right)}{2 Gamma left(frac{k}{2}+1right)} .
$$
Therefore
$$
frac{1}{k!}I(k)I(k+1)=frac{left(sqrt{pi } Gamma left(frac{k+1}{2}right)right) left(sqrt{pi } Gamma left(frac{k}{2}+1right)right)}{k! left(2 Gamma left(frac{k}{2}+1right)right) left(2 Gamma left(frac{k+3}{2}right)right)}=frac{pi }{2 Gamma (k+2)}
$$
after simplifications, which then leads to
$$
sum_{kgeq 0}frac{1}{k!}I(k)I(k+1)=frac{1}{2} (e-1) pi .
$$
$endgroup$
add a comment |
$begingroup$
Using the Taylor expansion of the exponential
$$
iint_{D}{sin(x)e^{sin(x)sin(y)}}text{d}A=sum_{kgeq 0}frac{1}{k!}int_0^{pi/2}mathrm{d}x~(sin x)^{k+1}int_0^{pi/2}mathrm{d}y~(sin y)^{k}=sum_{kgeq 0}frac{1}{k!}I(k)I(k+1) ,
$$
where
$$
I(k)=int_0^{pi/2}mathrm{d}x~(sin x)^{k}=int_0^1mathrm{du}~u^k(1-u^2)^{-1/2}=frac{sqrt{pi}~Gamma left(frac{k+1}{2}right)}{2 Gamma left(frac{k}{2}+1right)} .
$$
Therefore
$$
frac{1}{k!}I(k)I(k+1)=frac{left(sqrt{pi } Gamma left(frac{k+1}{2}right)right) left(sqrt{pi } Gamma left(frac{k}{2}+1right)right)}{k! left(2 Gamma left(frac{k}{2}+1right)right) left(2 Gamma left(frac{k+3}{2}right)right)}=frac{pi }{2 Gamma (k+2)}
$$
after simplifications, which then leads to
$$
sum_{kgeq 0}frac{1}{k!}I(k)I(k+1)=frac{1}{2} (e-1) pi .
$$
$endgroup$
add a comment |
$begingroup$
Using the Taylor expansion of the exponential
$$
iint_{D}{sin(x)e^{sin(x)sin(y)}}text{d}A=sum_{kgeq 0}frac{1}{k!}int_0^{pi/2}mathrm{d}x~(sin x)^{k+1}int_0^{pi/2}mathrm{d}y~(sin y)^{k}=sum_{kgeq 0}frac{1}{k!}I(k)I(k+1) ,
$$
where
$$
I(k)=int_0^{pi/2}mathrm{d}x~(sin x)^{k}=int_0^1mathrm{du}~u^k(1-u^2)^{-1/2}=frac{sqrt{pi}~Gamma left(frac{k+1}{2}right)}{2 Gamma left(frac{k}{2}+1right)} .
$$
Therefore
$$
frac{1}{k!}I(k)I(k+1)=frac{left(sqrt{pi } Gamma left(frac{k+1}{2}right)right) left(sqrt{pi } Gamma left(frac{k}{2}+1right)right)}{k! left(2 Gamma left(frac{k}{2}+1right)right) left(2 Gamma left(frac{k+3}{2}right)right)}=frac{pi }{2 Gamma (k+2)}
$$
after simplifications, which then leads to
$$
sum_{kgeq 0}frac{1}{k!}I(k)I(k+1)=frac{1}{2} (e-1) pi .
$$
$endgroup$
Using the Taylor expansion of the exponential
$$
iint_{D}{sin(x)e^{sin(x)sin(y)}}text{d}A=sum_{kgeq 0}frac{1}{k!}int_0^{pi/2}mathrm{d}x~(sin x)^{k+1}int_0^{pi/2}mathrm{d}y~(sin y)^{k}=sum_{kgeq 0}frac{1}{k!}I(k)I(k+1) ,
$$
where
$$
I(k)=int_0^{pi/2}mathrm{d}x~(sin x)^{k}=int_0^1mathrm{du}~u^k(1-u^2)^{-1/2}=frac{sqrt{pi}~Gamma left(frac{k+1}{2}right)}{2 Gamma left(frac{k}{2}+1right)} .
$$
Therefore
$$
frac{1}{k!}I(k)I(k+1)=frac{left(sqrt{pi } Gamma left(frac{k+1}{2}right)right) left(sqrt{pi } Gamma left(frac{k}{2}+1right)right)}{k! left(2 Gamma left(frac{k}{2}+1right)right) left(2 Gamma left(frac{k+3}{2}right)right)}=frac{pi }{2 Gamma (k+2)}
$$
after simplifications, which then leads to
$$
sum_{kgeq 0}frac{1}{k!}I(k)I(k+1)=frac{1}{2} (e-1) pi .
$$
answered Dec 24 '18 at 15:17
Pierpaolo VivoPierpaolo Vivo
5,3812724
5,3812724
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3032466%2flooking-for-another-way-to-calculate-the-integral-iint-d-sinxe-sinx-s%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown