Convergence test from Demidovich: $sum_{n=1}^{infty} frac{n^{n + frac{1}{n}}}{(n + frac{1}{n})^n}$
$begingroup$
I'm just learning how to test series for convergence and have encountered this series from the Demidovich's book and I can't really decide what criteria should I use. Could you please give me some hint(s)?
$$sum_{n=1}^{infty} frac{n^{n + frac{1}{n}}}{(n + frac{1}{n})^n}$$
calculus sequences-and-series convergence divergent-series
$endgroup$
add a comment |
$begingroup$
I'm just learning how to test series for convergence and have encountered this series from the Demidovich's book and I can't really decide what criteria should I use. Could you please give me some hint(s)?
$$sum_{n=1}^{infty} frac{n^{n + frac{1}{n}}}{(n + frac{1}{n})^n}$$
calculus sequences-and-series convergence divergent-series
$endgroup$
add a comment |
$begingroup$
I'm just learning how to test series for convergence and have encountered this series from the Demidovich's book and I can't really decide what criteria should I use. Could you please give me some hint(s)?
$$sum_{n=1}^{infty} frac{n^{n + frac{1}{n}}}{(n + frac{1}{n})^n}$$
calculus sequences-and-series convergence divergent-series
$endgroup$
I'm just learning how to test series for convergence and have encountered this series from the Demidovich's book and I can't really decide what criteria should I use. Could you please give me some hint(s)?
$$sum_{n=1}^{infty} frac{n^{n + frac{1}{n}}}{(n + frac{1}{n})^n}$$
calculus sequences-and-series convergence divergent-series
calculus sequences-and-series convergence divergent-series
edited Dec 9 '18 at 13:24
Martin Sleziak
44.9k10121274
44.9k10121274
asked May 17 '16 at 23:12
GogisGogis
103113
103113
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Hint: Since $n^{1/n} to 1,$ you can forget about it. We're left with an $n$th term equal to
$$frac{n^n}{(n+1/n)^n} = left ( frac{1}{1 + 1/n^2} right )^n.$$
$endgroup$
add a comment |
$begingroup$
The $n^{th}$ root test looks tempting because of all the $n^{th}$ powers, but it only works when the rate of increase or decrease of the terms of the series is exponential, which is not the case here. Let's work out a couple of limits instead:
$$lim_{nrightarrowinfty}n^{frac1n}=lim_{nrightarrowinfty}expleft(frac{ln n}nright)=expleft(frac 00right)=lim_{nrightarrowinfty}expleft(frac{frac1n}1right)=expleft(frac01right)=e^0=1$$
And
$$begin{align}lim_{nrightarrowinfty}left(1+frac1{n^2}right)^n&=lim_{nrightarrowinfty}expleft(nlnleft(1+frac1{n^2}right)right)\
&=lim_{nrightarrowinfty}expleft(frac{lnleft(1+frac1{n^2}right)}{frac1n}right)=expleft(frac00right)\
&=lim_{nrightarrowinfty}expleft(frac{frac{-frac2{n^3}}{1+frac1{n^2}}}{-frac1{n^2}}right)=lim_{nrightarrowinfty}expleft(frac{frac2n}{1+frac1{n^2}}right)\
&=expleft(frac0{1+0}right)=e^0=1end{align}$$
Then
$$lim_{nrightarrowinfty}frac{n^{n+frac1n}}{left(n+frac1nright)^n}=lim_{nrightarrowinfty}frac{n^{frac1n}}{left(1+frac1{n^2}right)^n}=frac11=1ne0$$
So the sum diverges by the divergence test.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1789685%2fconvergence-test-from-demidovich-sum-n-1-infty-fracnn-frac1n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint: Since $n^{1/n} to 1,$ you can forget about it. We're left with an $n$th term equal to
$$frac{n^n}{(n+1/n)^n} = left ( frac{1}{1 + 1/n^2} right )^n.$$
$endgroup$
add a comment |
$begingroup$
Hint: Since $n^{1/n} to 1,$ you can forget about it. We're left with an $n$th term equal to
$$frac{n^n}{(n+1/n)^n} = left ( frac{1}{1 + 1/n^2} right )^n.$$
$endgroup$
add a comment |
$begingroup$
Hint: Since $n^{1/n} to 1,$ you can forget about it. We're left with an $n$th term equal to
$$frac{n^n}{(n+1/n)^n} = left ( frac{1}{1 + 1/n^2} right )^n.$$
$endgroup$
Hint: Since $n^{1/n} to 1,$ you can forget about it. We're left with an $n$th term equal to
$$frac{n^n}{(n+1/n)^n} = left ( frac{1}{1 + 1/n^2} right )^n.$$
answered May 17 '16 at 23:32
zhw.zhw.
74.5k43175
74.5k43175
add a comment |
add a comment |
$begingroup$
The $n^{th}$ root test looks tempting because of all the $n^{th}$ powers, but it only works when the rate of increase or decrease of the terms of the series is exponential, which is not the case here. Let's work out a couple of limits instead:
$$lim_{nrightarrowinfty}n^{frac1n}=lim_{nrightarrowinfty}expleft(frac{ln n}nright)=expleft(frac 00right)=lim_{nrightarrowinfty}expleft(frac{frac1n}1right)=expleft(frac01right)=e^0=1$$
And
$$begin{align}lim_{nrightarrowinfty}left(1+frac1{n^2}right)^n&=lim_{nrightarrowinfty}expleft(nlnleft(1+frac1{n^2}right)right)\
&=lim_{nrightarrowinfty}expleft(frac{lnleft(1+frac1{n^2}right)}{frac1n}right)=expleft(frac00right)\
&=lim_{nrightarrowinfty}expleft(frac{frac{-frac2{n^3}}{1+frac1{n^2}}}{-frac1{n^2}}right)=lim_{nrightarrowinfty}expleft(frac{frac2n}{1+frac1{n^2}}right)\
&=expleft(frac0{1+0}right)=e^0=1end{align}$$
Then
$$lim_{nrightarrowinfty}frac{n^{n+frac1n}}{left(n+frac1nright)^n}=lim_{nrightarrowinfty}frac{n^{frac1n}}{left(1+frac1{n^2}right)^n}=frac11=1ne0$$
So the sum diverges by the divergence test.
$endgroup$
add a comment |
$begingroup$
The $n^{th}$ root test looks tempting because of all the $n^{th}$ powers, but it only works when the rate of increase or decrease of the terms of the series is exponential, which is not the case here. Let's work out a couple of limits instead:
$$lim_{nrightarrowinfty}n^{frac1n}=lim_{nrightarrowinfty}expleft(frac{ln n}nright)=expleft(frac 00right)=lim_{nrightarrowinfty}expleft(frac{frac1n}1right)=expleft(frac01right)=e^0=1$$
And
$$begin{align}lim_{nrightarrowinfty}left(1+frac1{n^2}right)^n&=lim_{nrightarrowinfty}expleft(nlnleft(1+frac1{n^2}right)right)\
&=lim_{nrightarrowinfty}expleft(frac{lnleft(1+frac1{n^2}right)}{frac1n}right)=expleft(frac00right)\
&=lim_{nrightarrowinfty}expleft(frac{frac{-frac2{n^3}}{1+frac1{n^2}}}{-frac1{n^2}}right)=lim_{nrightarrowinfty}expleft(frac{frac2n}{1+frac1{n^2}}right)\
&=expleft(frac0{1+0}right)=e^0=1end{align}$$
Then
$$lim_{nrightarrowinfty}frac{n^{n+frac1n}}{left(n+frac1nright)^n}=lim_{nrightarrowinfty}frac{n^{frac1n}}{left(1+frac1{n^2}right)^n}=frac11=1ne0$$
So the sum diverges by the divergence test.
$endgroup$
add a comment |
$begingroup$
The $n^{th}$ root test looks tempting because of all the $n^{th}$ powers, but it only works when the rate of increase or decrease of the terms of the series is exponential, which is not the case here. Let's work out a couple of limits instead:
$$lim_{nrightarrowinfty}n^{frac1n}=lim_{nrightarrowinfty}expleft(frac{ln n}nright)=expleft(frac 00right)=lim_{nrightarrowinfty}expleft(frac{frac1n}1right)=expleft(frac01right)=e^0=1$$
And
$$begin{align}lim_{nrightarrowinfty}left(1+frac1{n^2}right)^n&=lim_{nrightarrowinfty}expleft(nlnleft(1+frac1{n^2}right)right)\
&=lim_{nrightarrowinfty}expleft(frac{lnleft(1+frac1{n^2}right)}{frac1n}right)=expleft(frac00right)\
&=lim_{nrightarrowinfty}expleft(frac{frac{-frac2{n^3}}{1+frac1{n^2}}}{-frac1{n^2}}right)=lim_{nrightarrowinfty}expleft(frac{frac2n}{1+frac1{n^2}}right)\
&=expleft(frac0{1+0}right)=e^0=1end{align}$$
Then
$$lim_{nrightarrowinfty}frac{n^{n+frac1n}}{left(n+frac1nright)^n}=lim_{nrightarrowinfty}frac{n^{frac1n}}{left(1+frac1{n^2}right)^n}=frac11=1ne0$$
So the sum diverges by the divergence test.
$endgroup$
The $n^{th}$ root test looks tempting because of all the $n^{th}$ powers, but it only works when the rate of increase or decrease of the terms of the series is exponential, which is not the case here. Let's work out a couple of limits instead:
$$lim_{nrightarrowinfty}n^{frac1n}=lim_{nrightarrowinfty}expleft(frac{ln n}nright)=expleft(frac 00right)=lim_{nrightarrowinfty}expleft(frac{frac1n}1right)=expleft(frac01right)=e^0=1$$
And
$$begin{align}lim_{nrightarrowinfty}left(1+frac1{n^2}right)^n&=lim_{nrightarrowinfty}expleft(nlnleft(1+frac1{n^2}right)right)\
&=lim_{nrightarrowinfty}expleft(frac{lnleft(1+frac1{n^2}right)}{frac1n}right)=expleft(frac00right)\
&=lim_{nrightarrowinfty}expleft(frac{frac{-frac2{n^3}}{1+frac1{n^2}}}{-frac1{n^2}}right)=lim_{nrightarrowinfty}expleft(frac{frac2n}{1+frac1{n^2}}right)\
&=expleft(frac0{1+0}right)=e^0=1end{align}$$
Then
$$lim_{nrightarrowinfty}frac{n^{n+frac1n}}{left(n+frac1nright)^n}=lim_{nrightarrowinfty}frac{n^{frac1n}}{left(1+frac1{n^2}right)^n}=frac11=1ne0$$
So the sum diverges by the divergence test.
answered May 17 '16 at 23:37
user5713492user5713492
11.1k2919
11.1k2919
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1789685%2fconvergence-test-from-demidovich-sum-n-1-infty-fracnn-frac1n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown