Evaluating $limlimits_{x to 0} frac{(1+x)^{1/x} - e + frac{1}{2}ex}{x^2}$ without expansions in limits
$begingroup$
Evaluate $limlimits_{x to 0} frac{(1+x)^{1/x} - e + frac{1}{2}ex}{x^2}$
One way that I can immediately think of is expanding each of the terms and solving like,
$$(1+x)^{1/x} = e^{log_e (1+x)^{1/x}} = e^{frac{1}{x} (x-frac{x^2}{2} -frac{x^3}{3}+...)}$$
and then after complete expansion of each and every and substuting into back to limit and solving I get $frac{11e}{24}$ as an answer.
Now, this is a relatively long and complicated way to solve as you can see. I want to know if there is an easier way to solve this problem. Please help. Thank you!
calculus limits
$endgroup$
add a comment |
$begingroup$
Evaluate $limlimits_{x to 0} frac{(1+x)^{1/x} - e + frac{1}{2}ex}{x^2}$
One way that I can immediately think of is expanding each of the terms and solving like,
$$(1+x)^{1/x} = e^{log_e (1+x)^{1/x}} = e^{frac{1}{x} (x-frac{x^2}{2} -frac{x^3}{3}+...)}$$
and then after complete expansion of each and every and substuting into back to limit and solving I get $frac{11e}{24}$ as an answer.
Now, this is a relatively long and complicated way to solve as you can see. I want to know if there is an easier way to solve this problem. Please help. Thank you!
calculus limits
$endgroup$
add a comment |
$begingroup$
Evaluate $limlimits_{x to 0} frac{(1+x)^{1/x} - e + frac{1}{2}ex}{x^2}$
One way that I can immediately think of is expanding each of the terms and solving like,
$$(1+x)^{1/x} = e^{log_e (1+x)^{1/x}} = e^{frac{1}{x} (x-frac{x^2}{2} -frac{x^3}{3}+...)}$$
and then after complete expansion of each and every and substuting into back to limit and solving I get $frac{11e}{24}$ as an answer.
Now, this is a relatively long and complicated way to solve as you can see. I want to know if there is an easier way to solve this problem. Please help. Thank you!
calculus limits
$endgroup$
Evaluate $limlimits_{x to 0} frac{(1+x)^{1/x} - e + frac{1}{2}ex}{x^2}$
One way that I can immediately think of is expanding each of the terms and solving like,
$$(1+x)^{1/x} = e^{log_e (1+x)^{1/x}} = e^{frac{1}{x} (x-frac{x^2}{2} -frac{x^3}{3}+...)}$$
and then after complete expansion of each and every and substuting into back to limit and solving I get $frac{11e}{24}$ as an answer.
Now, this is a relatively long and complicated way to solve as you can see. I want to know if there is an easier way to solve this problem. Please help. Thank you!
calculus limits
calculus limits
edited Mar 12 at 7:39
Asaf Karagila♦
306k33438769
306k33438769
asked Mar 12 at 2:29
rashrash
526115
526115
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Write $f(x) = frac{1}{x}log(1+x)$ and $f(0) = 1$. We know that $f$ so defined is analytics near $0$. Now, by the L'Hospital's rule applied twice,
begin{align*}
lim_{xto0} frac{e^{f(x)} - e + frac{e}{2}x}{x^2}
&= lim_{xto0} frac{e^{f(x)}f'(x) + frac{e}{2}}{2x} \
&= lim_{xto0} frac{e^{f(x)}f''(x) + e^{f(x)}f'(x)^2}{2} \
&= frac{e}{2}f''(0) + frac{e}{2}f'(0)^2.
end{align*}
Since $ f(x) = 1 - frac{1}{2}x + frac{1}{3}x^2 + cdots $ near $0$, it follows that $f'(0) = -frac{1}{2}$ and $f''(0) = frac{2}{3}$. Therefore the limit equals
$$ frac{e}{2}cdotfrac{2}{3} + frac{e}{2}left(-frac{1}{2}right)^2
= frac{11}{24}e. $$
$endgroup$
add a comment |
$begingroup$
If I may suggest, the problem of
$$y=frac{(1+x)^{frac1 x} - e + frac{1}{2}ex}{x^2}$$ is not so difficult if you use another way.
$$a=(1+x)^{frac1 x}implies log(a)= {frac1 x}log(1+x)$$
$$ log(a)={frac1 x}left(x-frac{x^2}{2}+frac{x^3}{3}-frac{x^4}{4}+Oleft(x^5right) right)=1-frac{x}{2}+frac{x^2}{3}-frac{x^3}{4}+Oleft(x^4right)$$ Now, continuing with Taylor
$$a=e^{log(a)}=e-frac{e x}{2}+frac{11 e x^2}{24}-frac{7 e x^3}{16}+Oleft(x^4right)$$
$$y=frac{frac{11 e x^2}{24}-frac{7 e x^3}{16}+Oleft(x^4right) }{x^2}=frac{11 e}{24}-frac{7 e x}{16}+Oleft(x^2right)$$ which gives not only the limit but also how it is approached.
$endgroup$
add a comment |
$begingroup$
Solution without expansions by the L'Hospital's rule only:
$$lim_{xrightarrow0}frac{(1+x)^{1/x} - e + frac{1}{2}ex}{x^2}=lim_{xrightarrow0}frac{(1+x)^{frac{1}{x}}left(frac{ln(1+x)}{x}right)'+frac{1}{2}e}{2x}=$$
$$=lim_{xrightarrow0}frac{frac{(1+x)^{frac{1}{x}}left(frac{x}{1+x}-ln(1+x)right)}{x^2}+frac{1}{2}e}{2x}=lim_{xrightarrow0}frac{left(frac{(1+x)^{frac{1}{x}}left(frac{x}{1+x}-ln(1+x)right)}{x^2}right)'}{2}$$ because
$$lim_{xrightarrow0}frac{(1+x)^{frac{1}{x}}left(frac{x}{1+x}-ln(1+x)right)}{x^2}=elim_{xrightarrow0}frac{x-(1+x)ln(1+x)}{x^2+x^3}=$$
$$=elim_{xrightarrow0}frac{1-ln(1+x)-1}{2x+3x^2}=-frac{e}{2}$$ and we can continue:
$$ lim_{xrightarrow0}frac{left(frac{(1+x)^{frac{1}{x}}left(frac{x}{1+x}-ln(1+x)right)}{x^2}right)'}{2}=$$
$$=frac{1}{2}lim_{xrightarrow0}left(frac{frac{(1+x)^{frac{1}{x}}left(frac{x}{1+x}-ln(1+x)right)^2}{x^2}+(1+x)^{frac{1}{x}}left(frac{1}{(1+x)^2}-frac{1}{1+x}right)}{x^2}-frac{2}{x^3}(1+x)^{frac{1}{x}}left(frac{x}{1+x}-ln(1+x)right)right)=$$
$$=frac{e}{2}lim_{xrightarrow}left(frac{frac{left(frac{x}{1+x}-ln(1+x)right)^2}{x^2}-frac{x}{(1+x)^2}}{x^2}-frac{2}{x^3}left(frac{x}{1+x}-ln(1+x)right)right)=$$
$$=frac{e}{2}lim_{xrightarrow0}left(-frac{3x+1}{x^2(1+x)^2}+frac{2ln(1+x)}{(1+x)x^2}+frac{ln^2(1+x)}{x^4}right)=$$
$$=frac{e}{2}lim_{xrightarrow0}frac{(1+x)^2ln^2(1+x)+(2x^3+2x^2)ln(1+x)-3x^3-x^2}{x^4}=...=frac{11e}{24}.$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3144560%2fevaluating-lim-limits-x-to-0-frac1x1-x-e-frac12exx2-w%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Write $f(x) = frac{1}{x}log(1+x)$ and $f(0) = 1$. We know that $f$ so defined is analytics near $0$. Now, by the L'Hospital's rule applied twice,
begin{align*}
lim_{xto0} frac{e^{f(x)} - e + frac{e}{2}x}{x^2}
&= lim_{xto0} frac{e^{f(x)}f'(x) + frac{e}{2}}{2x} \
&= lim_{xto0} frac{e^{f(x)}f''(x) + e^{f(x)}f'(x)^2}{2} \
&= frac{e}{2}f''(0) + frac{e}{2}f'(0)^2.
end{align*}
Since $ f(x) = 1 - frac{1}{2}x + frac{1}{3}x^2 + cdots $ near $0$, it follows that $f'(0) = -frac{1}{2}$ and $f''(0) = frac{2}{3}$. Therefore the limit equals
$$ frac{e}{2}cdotfrac{2}{3} + frac{e}{2}left(-frac{1}{2}right)^2
= frac{11}{24}e. $$
$endgroup$
add a comment |
$begingroup$
Write $f(x) = frac{1}{x}log(1+x)$ and $f(0) = 1$. We know that $f$ so defined is analytics near $0$. Now, by the L'Hospital's rule applied twice,
begin{align*}
lim_{xto0} frac{e^{f(x)} - e + frac{e}{2}x}{x^2}
&= lim_{xto0} frac{e^{f(x)}f'(x) + frac{e}{2}}{2x} \
&= lim_{xto0} frac{e^{f(x)}f''(x) + e^{f(x)}f'(x)^2}{2} \
&= frac{e}{2}f''(0) + frac{e}{2}f'(0)^2.
end{align*}
Since $ f(x) = 1 - frac{1}{2}x + frac{1}{3}x^2 + cdots $ near $0$, it follows that $f'(0) = -frac{1}{2}$ and $f''(0) = frac{2}{3}$. Therefore the limit equals
$$ frac{e}{2}cdotfrac{2}{3} + frac{e}{2}left(-frac{1}{2}right)^2
= frac{11}{24}e. $$
$endgroup$
add a comment |
$begingroup$
Write $f(x) = frac{1}{x}log(1+x)$ and $f(0) = 1$. We know that $f$ so defined is analytics near $0$. Now, by the L'Hospital's rule applied twice,
begin{align*}
lim_{xto0} frac{e^{f(x)} - e + frac{e}{2}x}{x^2}
&= lim_{xto0} frac{e^{f(x)}f'(x) + frac{e}{2}}{2x} \
&= lim_{xto0} frac{e^{f(x)}f''(x) + e^{f(x)}f'(x)^2}{2} \
&= frac{e}{2}f''(0) + frac{e}{2}f'(0)^2.
end{align*}
Since $ f(x) = 1 - frac{1}{2}x + frac{1}{3}x^2 + cdots $ near $0$, it follows that $f'(0) = -frac{1}{2}$ and $f''(0) = frac{2}{3}$. Therefore the limit equals
$$ frac{e}{2}cdotfrac{2}{3} + frac{e}{2}left(-frac{1}{2}right)^2
= frac{11}{24}e. $$
$endgroup$
Write $f(x) = frac{1}{x}log(1+x)$ and $f(0) = 1$. We know that $f$ so defined is analytics near $0$. Now, by the L'Hospital's rule applied twice,
begin{align*}
lim_{xto0} frac{e^{f(x)} - e + frac{e}{2}x}{x^2}
&= lim_{xto0} frac{e^{f(x)}f'(x) + frac{e}{2}}{2x} \
&= lim_{xto0} frac{e^{f(x)}f''(x) + e^{f(x)}f'(x)^2}{2} \
&= frac{e}{2}f''(0) + frac{e}{2}f'(0)^2.
end{align*}
Since $ f(x) = 1 - frac{1}{2}x + frac{1}{3}x^2 + cdots $ near $0$, it follows that $f'(0) = -frac{1}{2}$ and $f''(0) = frac{2}{3}$. Therefore the limit equals
$$ frac{e}{2}cdotfrac{2}{3} + frac{e}{2}left(-frac{1}{2}right)^2
= frac{11}{24}e. $$
answered Mar 12 at 6:39
Sangchul LeeSangchul Lee
96.1k12171281
96.1k12171281
add a comment |
add a comment |
$begingroup$
If I may suggest, the problem of
$$y=frac{(1+x)^{frac1 x} - e + frac{1}{2}ex}{x^2}$$ is not so difficult if you use another way.
$$a=(1+x)^{frac1 x}implies log(a)= {frac1 x}log(1+x)$$
$$ log(a)={frac1 x}left(x-frac{x^2}{2}+frac{x^3}{3}-frac{x^4}{4}+Oleft(x^5right) right)=1-frac{x}{2}+frac{x^2}{3}-frac{x^3}{4}+Oleft(x^4right)$$ Now, continuing with Taylor
$$a=e^{log(a)}=e-frac{e x}{2}+frac{11 e x^2}{24}-frac{7 e x^3}{16}+Oleft(x^4right)$$
$$y=frac{frac{11 e x^2}{24}-frac{7 e x^3}{16}+Oleft(x^4right) }{x^2}=frac{11 e}{24}-frac{7 e x}{16}+Oleft(x^2right)$$ which gives not only the limit but also how it is approached.
$endgroup$
add a comment |
$begingroup$
If I may suggest, the problem of
$$y=frac{(1+x)^{frac1 x} - e + frac{1}{2}ex}{x^2}$$ is not so difficult if you use another way.
$$a=(1+x)^{frac1 x}implies log(a)= {frac1 x}log(1+x)$$
$$ log(a)={frac1 x}left(x-frac{x^2}{2}+frac{x^3}{3}-frac{x^4}{4}+Oleft(x^5right) right)=1-frac{x}{2}+frac{x^2}{3}-frac{x^3}{4}+Oleft(x^4right)$$ Now, continuing with Taylor
$$a=e^{log(a)}=e-frac{e x}{2}+frac{11 e x^2}{24}-frac{7 e x^3}{16}+Oleft(x^4right)$$
$$y=frac{frac{11 e x^2}{24}-frac{7 e x^3}{16}+Oleft(x^4right) }{x^2}=frac{11 e}{24}-frac{7 e x}{16}+Oleft(x^2right)$$ which gives not only the limit but also how it is approached.
$endgroup$
add a comment |
$begingroup$
If I may suggest, the problem of
$$y=frac{(1+x)^{frac1 x} - e + frac{1}{2}ex}{x^2}$$ is not so difficult if you use another way.
$$a=(1+x)^{frac1 x}implies log(a)= {frac1 x}log(1+x)$$
$$ log(a)={frac1 x}left(x-frac{x^2}{2}+frac{x^3}{3}-frac{x^4}{4}+Oleft(x^5right) right)=1-frac{x}{2}+frac{x^2}{3}-frac{x^3}{4}+Oleft(x^4right)$$ Now, continuing with Taylor
$$a=e^{log(a)}=e-frac{e x}{2}+frac{11 e x^2}{24}-frac{7 e x^3}{16}+Oleft(x^4right)$$
$$y=frac{frac{11 e x^2}{24}-frac{7 e x^3}{16}+Oleft(x^4right) }{x^2}=frac{11 e}{24}-frac{7 e x}{16}+Oleft(x^2right)$$ which gives not only the limit but also how it is approached.
$endgroup$
If I may suggest, the problem of
$$y=frac{(1+x)^{frac1 x} - e + frac{1}{2}ex}{x^2}$$ is not so difficult if you use another way.
$$a=(1+x)^{frac1 x}implies log(a)= {frac1 x}log(1+x)$$
$$ log(a)={frac1 x}left(x-frac{x^2}{2}+frac{x^3}{3}-frac{x^4}{4}+Oleft(x^5right) right)=1-frac{x}{2}+frac{x^2}{3}-frac{x^3}{4}+Oleft(x^4right)$$ Now, continuing with Taylor
$$a=e^{log(a)}=e-frac{e x}{2}+frac{11 e x^2}{24}-frac{7 e x^3}{16}+Oleft(x^4right)$$
$$y=frac{frac{11 e x^2}{24}-frac{7 e x^3}{16}+Oleft(x^4right) }{x^2}=frac{11 e}{24}-frac{7 e x}{16}+Oleft(x^2right)$$ which gives not only the limit but also how it is approached.
answered Mar 12 at 4:31
Claude LeiboviciClaude Leibovici
124k1158135
124k1158135
add a comment |
add a comment |
$begingroup$
Solution without expansions by the L'Hospital's rule only:
$$lim_{xrightarrow0}frac{(1+x)^{1/x} - e + frac{1}{2}ex}{x^2}=lim_{xrightarrow0}frac{(1+x)^{frac{1}{x}}left(frac{ln(1+x)}{x}right)'+frac{1}{2}e}{2x}=$$
$$=lim_{xrightarrow0}frac{frac{(1+x)^{frac{1}{x}}left(frac{x}{1+x}-ln(1+x)right)}{x^2}+frac{1}{2}e}{2x}=lim_{xrightarrow0}frac{left(frac{(1+x)^{frac{1}{x}}left(frac{x}{1+x}-ln(1+x)right)}{x^2}right)'}{2}$$ because
$$lim_{xrightarrow0}frac{(1+x)^{frac{1}{x}}left(frac{x}{1+x}-ln(1+x)right)}{x^2}=elim_{xrightarrow0}frac{x-(1+x)ln(1+x)}{x^2+x^3}=$$
$$=elim_{xrightarrow0}frac{1-ln(1+x)-1}{2x+3x^2}=-frac{e}{2}$$ and we can continue:
$$ lim_{xrightarrow0}frac{left(frac{(1+x)^{frac{1}{x}}left(frac{x}{1+x}-ln(1+x)right)}{x^2}right)'}{2}=$$
$$=frac{1}{2}lim_{xrightarrow0}left(frac{frac{(1+x)^{frac{1}{x}}left(frac{x}{1+x}-ln(1+x)right)^2}{x^2}+(1+x)^{frac{1}{x}}left(frac{1}{(1+x)^2}-frac{1}{1+x}right)}{x^2}-frac{2}{x^3}(1+x)^{frac{1}{x}}left(frac{x}{1+x}-ln(1+x)right)right)=$$
$$=frac{e}{2}lim_{xrightarrow}left(frac{frac{left(frac{x}{1+x}-ln(1+x)right)^2}{x^2}-frac{x}{(1+x)^2}}{x^2}-frac{2}{x^3}left(frac{x}{1+x}-ln(1+x)right)right)=$$
$$=frac{e}{2}lim_{xrightarrow0}left(-frac{3x+1}{x^2(1+x)^2}+frac{2ln(1+x)}{(1+x)x^2}+frac{ln^2(1+x)}{x^4}right)=$$
$$=frac{e}{2}lim_{xrightarrow0}frac{(1+x)^2ln^2(1+x)+(2x^3+2x^2)ln(1+x)-3x^3-x^2}{x^4}=...=frac{11e}{24}.$$
$endgroup$
add a comment |
$begingroup$
Solution without expansions by the L'Hospital's rule only:
$$lim_{xrightarrow0}frac{(1+x)^{1/x} - e + frac{1}{2}ex}{x^2}=lim_{xrightarrow0}frac{(1+x)^{frac{1}{x}}left(frac{ln(1+x)}{x}right)'+frac{1}{2}e}{2x}=$$
$$=lim_{xrightarrow0}frac{frac{(1+x)^{frac{1}{x}}left(frac{x}{1+x}-ln(1+x)right)}{x^2}+frac{1}{2}e}{2x}=lim_{xrightarrow0}frac{left(frac{(1+x)^{frac{1}{x}}left(frac{x}{1+x}-ln(1+x)right)}{x^2}right)'}{2}$$ because
$$lim_{xrightarrow0}frac{(1+x)^{frac{1}{x}}left(frac{x}{1+x}-ln(1+x)right)}{x^2}=elim_{xrightarrow0}frac{x-(1+x)ln(1+x)}{x^2+x^3}=$$
$$=elim_{xrightarrow0}frac{1-ln(1+x)-1}{2x+3x^2}=-frac{e}{2}$$ and we can continue:
$$ lim_{xrightarrow0}frac{left(frac{(1+x)^{frac{1}{x}}left(frac{x}{1+x}-ln(1+x)right)}{x^2}right)'}{2}=$$
$$=frac{1}{2}lim_{xrightarrow0}left(frac{frac{(1+x)^{frac{1}{x}}left(frac{x}{1+x}-ln(1+x)right)^2}{x^2}+(1+x)^{frac{1}{x}}left(frac{1}{(1+x)^2}-frac{1}{1+x}right)}{x^2}-frac{2}{x^3}(1+x)^{frac{1}{x}}left(frac{x}{1+x}-ln(1+x)right)right)=$$
$$=frac{e}{2}lim_{xrightarrow}left(frac{frac{left(frac{x}{1+x}-ln(1+x)right)^2}{x^2}-frac{x}{(1+x)^2}}{x^2}-frac{2}{x^3}left(frac{x}{1+x}-ln(1+x)right)right)=$$
$$=frac{e}{2}lim_{xrightarrow0}left(-frac{3x+1}{x^2(1+x)^2}+frac{2ln(1+x)}{(1+x)x^2}+frac{ln^2(1+x)}{x^4}right)=$$
$$=frac{e}{2}lim_{xrightarrow0}frac{(1+x)^2ln^2(1+x)+(2x^3+2x^2)ln(1+x)-3x^3-x^2}{x^4}=...=frac{11e}{24}.$$
$endgroup$
add a comment |
$begingroup$
Solution without expansions by the L'Hospital's rule only:
$$lim_{xrightarrow0}frac{(1+x)^{1/x} - e + frac{1}{2}ex}{x^2}=lim_{xrightarrow0}frac{(1+x)^{frac{1}{x}}left(frac{ln(1+x)}{x}right)'+frac{1}{2}e}{2x}=$$
$$=lim_{xrightarrow0}frac{frac{(1+x)^{frac{1}{x}}left(frac{x}{1+x}-ln(1+x)right)}{x^2}+frac{1}{2}e}{2x}=lim_{xrightarrow0}frac{left(frac{(1+x)^{frac{1}{x}}left(frac{x}{1+x}-ln(1+x)right)}{x^2}right)'}{2}$$ because
$$lim_{xrightarrow0}frac{(1+x)^{frac{1}{x}}left(frac{x}{1+x}-ln(1+x)right)}{x^2}=elim_{xrightarrow0}frac{x-(1+x)ln(1+x)}{x^2+x^3}=$$
$$=elim_{xrightarrow0}frac{1-ln(1+x)-1}{2x+3x^2}=-frac{e}{2}$$ and we can continue:
$$ lim_{xrightarrow0}frac{left(frac{(1+x)^{frac{1}{x}}left(frac{x}{1+x}-ln(1+x)right)}{x^2}right)'}{2}=$$
$$=frac{1}{2}lim_{xrightarrow0}left(frac{frac{(1+x)^{frac{1}{x}}left(frac{x}{1+x}-ln(1+x)right)^2}{x^2}+(1+x)^{frac{1}{x}}left(frac{1}{(1+x)^2}-frac{1}{1+x}right)}{x^2}-frac{2}{x^3}(1+x)^{frac{1}{x}}left(frac{x}{1+x}-ln(1+x)right)right)=$$
$$=frac{e}{2}lim_{xrightarrow}left(frac{frac{left(frac{x}{1+x}-ln(1+x)right)^2}{x^2}-frac{x}{(1+x)^2}}{x^2}-frac{2}{x^3}left(frac{x}{1+x}-ln(1+x)right)right)=$$
$$=frac{e}{2}lim_{xrightarrow0}left(-frac{3x+1}{x^2(1+x)^2}+frac{2ln(1+x)}{(1+x)x^2}+frac{ln^2(1+x)}{x^4}right)=$$
$$=frac{e}{2}lim_{xrightarrow0}frac{(1+x)^2ln^2(1+x)+(2x^3+2x^2)ln(1+x)-3x^3-x^2}{x^4}=...=frac{11e}{24}.$$
$endgroup$
Solution without expansions by the L'Hospital's rule only:
$$lim_{xrightarrow0}frac{(1+x)^{1/x} - e + frac{1}{2}ex}{x^2}=lim_{xrightarrow0}frac{(1+x)^{frac{1}{x}}left(frac{ln(1+x)}{x}right)'+frac{1}{2}e}{2x}=$$
$$=lim_{xrightarrow0}frac{frac{(1+x)^{frac{1}{x}}left(frac{x}{1+x}-ln(1+x)right)}{x^2}+frac{1}{2}e}{2x}=lim_{xrightarrow0}frac{left(frac{(1+x)^{frac{1}{x}}left(frac{x}{1+x}-ln(1+x)right)}{x^2}right)'}{2}$$ because
$$lim_{xrightarrow0}frac{(1+x)^{frac{1}{x}}left(frac{x}{1+x}-ln(1+x)right)}{x^2}=elim_{xrightarrow0}frac{x-(1+x)ln(1+x)}{x^2+x^3}=$$
$$=elim_{xrightarrow0}frac{1-ln(1+x)-1}{2x+3x^2}=-frac{e}{2}$$ and we can continue:
$$ lim_{xrightarrow0}frac{left(frac{(1+x)^{frac{1}{x}}left(frac{x}{1+x}-ln(1+x)right)}{x^2}right)'}{2}=$$
$$=frac{1}{2}lim_{xrightarrow0}left(frac{frac{(1+x)^{frac{1}{x}}left(frac{x}{1+x}-ln(1+x)right)^2}{x^2}+(1+x)^{frac{1}{x}}left(frac{1}{(1+x)^2}-frac{1}{1+x}right)}{x^2}-frac{2}{x^3}(1+x)^{frac{1}{x}}left(frac{x}{1+x}-ln(1+x)right)right)=$$
$$=frac{e}{2}lim_{xrightarrow}left(frac{frac{left(frac{x}{1+x}-ln(1+x)right)^2}{x^2}-frac{x}{(1+x)^2}}{x^2}-frac{2}{x^3}left(frac{x}{1+x}-ln(1+x)right)right)=$$
$$=frac{e}{2}lim_{xrightarrow0}left(-frac{3x+1}{x^2(1+x)^2}+frac{2ln(1+x)}{(1+x)x^2}+frac{ln^2(1+x)}{x^4}right)=$$
$$=frac{e}{2}lim_{xrightarrow0}frac{(1+x)^2ln^2(1+x)+(2x^3+2x^2)ln(1+x)-3x^3-x^2}{x^4}=...=frac{11e}{24}.$$
answered Mar 12 at 8:57
Michael RozenbergMichael Rozenberg
108k1895200
108k1895200
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3144560%2fevaluating-lim-limits-x-to-0-frac1x1-x-e-frac12exx2-w%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown