isomorphism of dihedral group with these elements
$begingroup$
So I have a group of order $2m$ with these elements:
$$(overline{0},overline{0}),(overline{1},overline{0})...(overline{m-1},overline{0})$$
$$(overline{0},overline{1})(overline{-1},overline{1})...(overline{-(m-1)},overline{1})$$
Dihedral group $D_m$ has these elements:
$$(r^0s^0)(r^1s^0)...(r^{m-1}s^0)$$
$$(r^0s^1)(r^1s^1)...(r^{m-1}s^1)$$
I want write that it is isomorphic to the dihedral group of order m. It is so obvious to me that I'm not sure how to prove it.
Thanks for the help
group-theory dihedral-groups
$endgroup$
add a comment |
$begingroup$
So I have a group of order $2m$ with these elements:
$$(overline{0},overline{0}),(overline{1},overline{0})...(overline{m-1},overline{0})$$
$$(overline{0},overline{1})(overline{-1},overline{1})...(overline{-(m-1)},overline{1})$$
Dihedral group $D_m$ has these elements:
$$(r^0s^0)(r^1s^0)...(r^{m-1}s^0)$$
$$(r^0s^1)(r^1s^1)...(r^{m-1}s^1)$$
I want write that it is isomorphic to the dihedral group of order m. It is so obvious to me that I'm not sure how to prove it.
Thanks for the help
group-theory dihedral-groups
$endgroup$
$begingroup$
What is the group operation on your $2m$ elements?
$endgroup$
– Servaes
Dec 2 '18 at 20:40
1
$begingroup$
Group G of order 2m is: $$mathbb{Z}_m rtimes_{varphi} mathbb{Z}_2$$ and I am given that $varphi_{1+2mathbb{Z}}(1+mmathbb{Z}) = m-1+mmathbb{Z}$
$endgroup$
– JoeyF
Dec 2 '18 at 20:40
add a comment |
$begingroup$
So I have a group of order $2m$ with these elements:
$$(overline{0},overline{0}),(overline{1},overline{0})...(overline{m-1},overline{0})$$
$$(overline{0},overline{1})(overline{-1},overline{1})...(overline{-(m-1)},overline{1})$$
Dihedral group $D_m$ has these elements:
$$(r^0s^0)(r^1s^0)...(r^{m-1}s^0)$$
$$(r^0s^1)(r^1s^1)...(r^{m-1}s^1)$$
I want write that it is isomorphic to the dihedral group of order m. It is so obvious to me that I'm not sure how to prove it.
Thanks for the help
group-theory dihedral-groups
$endgroup$
So I have a group of order $2m$ with these elements:
$$(overline{0},overline{0}),(overline{1},overline{0})...(overline{m-1},overline{0})$$
$$(overline{0},overline{1})(overline{-1},overline{1})...(overline{-(m-1)},overline{1})$$
Dihedral group $D_m$ has these elements:
$$(r^0s^0)(r^1s^0)...(r^{m-1}s^0)$$
$$(r^0s^1)(r^1s^1)...(r^{m-1}s^1)$$
I want write that it is isomorphic to the dihedral group of order m. It is so obvious to me that I'm not sure how to prove it.
Thanks for the help
group-theory dihedral-groups
group-theory dihedral-groups
asked Dec 2 '18 at 20:15
JoeyFJoeyF
62
62
$begingroup$
What is the group operation on your $2m$ elements?
$endgroup$
– Servaes
Dec 2 '18 at 20:40
1
$begingroup$
Group G of order 2m is: $$mathbb{Z}_m rtimes_{varphi} mathbb{Z}_2$$ and I am given that $varphi_{1+2mathbb{Z}}(1+mmathbb{Z}) = m-1+mmathbb{Z}$
$endgroup$
– JoeyF
Dec 2 '18 at 20:40
add a comment |
$begingroup$
What is the group operation on your $2m$ elements?
$endgroup$
– Servaes
Dec 2 '18 at 20:40
1
$begingroup$
Group G of order 2m is: $$mathbb{Z}_m rtimes_{varphi} mathbb{Z}_2$$ and I am given that $varphi_{1+2mathbb{Z}}(1+mmathbb{Z}) = m-1+mmathbb{Z}$
$endgroup$
– JoeyF
Dec 2 '18 at 20:40
$begingroup$
What is the group operation on your $2m$ elements?
$endgroup$
– Servaes
Dec 2 '18 at 20:40
$begingroup$
What is the group operation on your $2m$ elements?
$endgroup$
– Servaes
Dec 2 '18 at 20:40
1
1
$begingroup$
Group G of order 2m is: $$mathbb{Z}_m rtimes_{varphi} mathbb{Z}_2$$ and I am given that $varphi_{1+2mathbb{Z}}(1+mmathbb{Z}) = m-1+mmathbb{Z}$
$endgroup$
– JoeyF
Dec 2 '18 at 20:40
$begingroup$
Group G of order 2m is: $$mathbb{Z}_m rtimes_{varphi} mathbb{Z}_2$$ and I am given that $varphi_{1+2mathbb{Z}}(1+mmathbb{Z}) = m-1+mmathbb{Z}$
$endgroup$
– JoeyF
Dec 2 '18 at 20:40
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
As you want to show an isomorphism with a dihedral group, how about constructing a faithful action of your group on the regular $m$-gon? This yields an injection into $D_m$, and because they are both groups of order $2m$ this must be an isomorphism.
Given that the group is constructed as a semidirect product, another approach is to take subgroups $T,Ssubset D_m$ such that $TcongBbb{Z}_m$ and $ScongBbb{Z}_2$. And show that $D_m=Trtimes_{psi}S$ where $psi: S longrightarrow operatorname{Aut}T$ is the map obtained from $varphi$ through the isomorphisms $TcongBbb{Z}_m$ and $ScongBbb{Z}_2$. Of course you want $psi$ to turn out to be the conjugation action of $S$ on $T$.
$endgroup$
$begingroup$
I haven't seen group actions yet in my class. But thanks for the help!
$endgroup$
– JoeyF
Dec 2 '18 at 20:52
add a comment |
$begingroup$
Probably the easiest way to see is to show you have 2 generators, $r$ and $s$ with orders n and 2 respectively. Furthermore, $sr^{-1}=rs$. Hence, it is the dihedral group with 2n elements.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3023119%2fisomorphism-of-dihedral-group-with-these-elements%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
As you want to show an isomorphism with a dihedral group, how about constructing a faithful action of your group on the regular $m$-gon? This yields an injection into $D_m$, and because they are both groups of order $2m$ this must be an isomorphism.
Given that the group is constructed as a semidirect product, another approach is to take subgroups $T,Ssubset D_m$ such that $TcongBbb{Z}_m$ and $ScongBbb{Z}_2$. And show that $D_m=Trtimes_{psi}S$ where $psi: S longrightarrow operatorname{Aut}T$ is the map obtained from $varphi$ through the isomorphisms $TcongBbb{Z}_m$ and $ScongBbb{Z}_2$. Of course you want $psi$ to turn out to be the conjugation action of $S$ on $T$.
$endgroup$
$begingroup$
I haven't seen group actions yet in my class. But thanks for the help!
$endgroup$
– JoeyF
Dec 2 '18 at 20:52
add a comment |
$begingroup$
As you want to show an isomorphism with a dihedral group, how about constructing a faithful action of your group on the regular $m$-gon? This yields an injection into $D_m$, and because they are both groups of order $2m$ this must be an isomorphism.
Given that the group is constructed as a semidirect product, another approach is to take subgroups $T,Ssubset D_m$ such that $TcongBbb{Z}_m$ and $ScongBbb{Z}_2$. And show that $D_m=Trtimes_{psi}S$ where $psi: S longrightarrow operatorname{Aut}T$ is the map obtained from $varphi$ through the isomorphisms $TcongBbb{Z}_m$ and $ScongBbb{Z}_2$. Of course you want $psi$ to turn out to be the conjugation action of $S$ on $T$.
$endgroup$
$begingroup$
I haven't seen group actions yet in my class. But thanks for the help!
$endgroup$
– JoeyF
Dec 2 '18 at 20:52
add a comment |
$begingroup$
As you want to show an isomorphism with a dihedral group, how about constructing a faithful action of your group on the regular $m$-gon? This yields an injection into $D_m$, and because they are both groups of order $2m$ this must be an isomorphism.
Given that the group is constructed as a semidirect product, another approach is to take subgroups $T,Ssubset D_m$ such that $TcongBbb{Z}_m$ and $ScongBbb{Z}_2$. And show that $D_m=Trtimes_{psi}S$ where $psi: S longrightarrow operatorname{Aut}T$ is the map obtained from $varphi$ through the isomorphisms $TcongBbb{Z}_m$ and $ScongBbb{Z}_2$. Of course you want $psi$ to turn out to be the conjugation action of $S$ on $T$.
$endgroup$
As you want to show an isomorphism with a dihedral group, how about constructing a faithful action of your group on the regular $m$-gon? This yields an injection into $D_m$, and because they are both groups of order $2m$ this must be an isomorphism.
Given that the group is constructed as a semidirect product, another approach is to take subgroups $T,Ssubset D_m$ such that $TcongBbb{Z}_m$ and $ScongBbb{Z}_2$. And show that $D_m=Trtimes_{psi}S$ where $psi: S longrightarrow operatorname{Aut}T$ is the map obtained from $varphi$ through the isomorphisms $TcongBbb{Z}_m$ and $ScongBbb{Z}_2$. Of course you want $psi$ to turn out to be the conjugation action of $S$ on $T$.
answered Dec 2 '18 at 20:49
ServaesServaes
25.6k33996
25.6k33996
$begingroup$
I haven't seen group actions yet in my class. But thanks for the help!
$endgroup$
– JoeyF
Dec 2 '18 at 20:52
add a comment |
$begingroup$
I haven't seen group actions yet in my class. But thanks for the help!
$endgroup$
– JoeyF
Dec 2 '18 at 20:52
$begingroup$
I haven't seen group actions yet in my class. But thanks for the help!
$endgroup$
– JoeyF
Dec 2 '18 at 20:52
$begingroup$
I haven't seen group actions yet in my class. But thanks for the help!
$endgroup$
– JoeyF
Dec 2 '18 at 20:52
add a comment |
$begingroup$
Probably the easiest way to see is to show you have 2 generators, $r$ and $s$ with orders n and 2 respectively. Furthermore, $sr^{-1}=rs$. Hence, it is the dihedral group with 2n elements.
$endgroup$
add a comment |
$begingroup$
Probably the easiest way to see is to show you have 2 generators, $r$ and $s$ with orders n and 2 respectively. Furthermore, $sr^{-1}=rs$. Hence, it is the dihedral group with 2n elements.
$endgroup$
add a comment |
$begingroup$
Probably the easiest way to see is to show you have 2 generators, $r$ and $s$ with orders n and 2 respectively. Furthermore, $sr^{-1}=rs$. Hence, it is the dihedral group with 2n elements.
$endgroup$
Probably the easiest way to see is to show you have 2 generators, $r$ and $s$ with orders n and 2 respectively. Furthermore, $sr^{-1}=rs$. Hence, it is the dihedral group with 2n elements.
answered Dec 2 '18 at 20:49
Baran ZadeogluBaran Zadeoglu
296
296
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3023119%2fisomorphism-of-dihedral-group-with-these-elements%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
What is the group operation on your $2m$ elements?
$endgroup$
– Servaes
Dec 2 '18 at 20:40
1
$begingroup$
Group G of order 2m is: $$mathbb{Z}_m rtimes_{varphi} mathbb{Z}_2$$ and I am given that $varphi_{1+2mathbb{Z}}(1+mmathbb{Z}) = m-1+mmathbb{Z}$
$endgroup$
– JoeyF
Dec 2 '18 at 20:40