Finding position at given distance in a GeoPath
Is there a way to find the geoposition of a given distance from start in a GeoPath
? I want to mark equidistant positions along a track, for example, a mark every 500 km along the path given by
path=GeoGraphics[
GeoPath[{
Entity["City", {"Boston", "Massachusetts", "UnitedStates"}],
Entity["City", {"Rochester", "NewYork", "UnitedStates"}],
Entity["City", {"Chicago", "Illinois", "UnitedStates"}]
}, "Rhumb"]
]
Is there a way to find the pos that gives GeoDistance[Entity["City", {"Boston", "Massachusetts", "UnitedStates"}],pos]==500 km
along the path?
geographics
add a comment |
Is there a way to find the geoposition of a given distance from start in a GeoPath
? I want to mark equidistant positions along a track, for example, a mark every 500 km along the path given by
path=GeoGraphics[
GeoPath[{
Entity["City", {"Boston", "Massachusetts", "UnitedStates"}],
Entity["City", {"Rochester", "NewYork", "UnitedStates"}],
Entity["City", {"Chicago", "Illinois", "UnitedStates"}]
}, "Rhumb"]
]
Is there a way to find the pos that gives GeoDistance[Entity["City", {"Boston", "Massachusetts", "UnitedStates"}],pos]==500 km
along the path?
geographics
add a comment |
Is there a way to find the geoposition of a given distance from start in a GeoPath
? I want to mark equidistant positions along a track, for example, a mark every 500 km along the path given by
path=GeoGraphics[
GeoPath[{
Entity["City", {"Boston", "Massachusetts", "UnitedStates"}],
Entity["City", {"Rochester", "NewYork", "UnitedStates"}],
Entity["City", {"Chicago", "Illinois", "UnitedStates"}]
}, "Rhumb"]
]
Is there a way to find the pos that gives GeoDistance[Entity["City", {"Boston", "Massachusetts", "UnitedStates"}],pos]==500 km
along the path?
geographics
Is there a way to find the geoposition of a given distance from start in a GeoPath
? I want to mark equidistant positions along a track, for example, a mark every 500 km along the path given by
path=GeoGraphics[
GeoPath[{
Entity["City", {"Boston", "Massachusetts", "UnitedStates"}],
Entity["City", {"Rochester", "NewYork", "UnitedStates"}],
Entity["City", {"Chicago", "Illinois", "UnitedStates"}]
}, "Rhumb"]
]
Is there a way to find the pos that gives GeoDistance[Entity["City", {"Boston", "Massachusetts", "UnitedStates"}],pos]==500 km
along the path?
geographics
geographics
edited Nov 28 at 13:10
Kuba♦
103k12201515
103k12201515
asked Nov 28 at 12:57
Gunnar
462
462
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
Here's my attempt to parametrize the path by arclength, where here arclength is GeoLength
.
First I build up a function that can be used on many values:
ParametrizeGeoPath[g_GeoPath, t_] := ParametrizeGeoPath[g][t]
ParametrizeGeoPath[GeoPath[locs_, args___]] :=
Block[{line, nodes, lens, acc, nf, n1, n2, solver},
line = GeoGraphics`GeoEvaluate[GeoPath[locs, args]];
nodes = GeoPosition /@ Reverse[line[[1]], {2}];
lens = QuantityMagnitude[UnitConvert[GeoLength[GeoPath[#, args]]& /@ Partition[nodes, 2, 1], "Kilometers"]];
acc = Accumulate[lens];
nf = Nearest[acc -> {"Index", "Element"}];
GeoPathParametricFunction[acc, nodes, nf, args]
]
Given a target distance, we can invert GeoLength
with FindRoot
:
GeoPathParametricFunction[_, nodes_, __][d_] /; d == 0 := First[nodes]
GeoPathParametricFunction[acc_, nodes_, __][d_] /; d == Last[acc] := Last[nodes]
GeoPathParametricFunction[acc_, nodes_, nf_, args___][d_] /; 0 < d < Last[acc] :=
Block[{i, v, s, n1, n2, dist, root, t = Unique["t"]},
{i, v} = First[nf[d]];
If[v > d, i--];
s = If[i == 0, 0, acc[[i]]];
n1 = nodes[[i+1, 1]];
n2 = nodes[[i+2, 1]];
dist[t_?NumericQ] := s + QuantityMagnitude[UnitConvert[GeoLength[GeoPath[{GeoPosition[n1], GeoPosition[(1-t)n1 + t n2]}, args]], "Kilometers"]];
root = Quiet@FindRoot[dist[t] == d, {t, .5, 0, 1}];
(
GeoPosition[(1-t)n1 + t n2] /. root
) /; MatchQ[root, {t -> _Real}]
]
GeoPathParametricFunction[___][d_?NumericQ] = Indeterminate;
GeoPathParametricFunction /: MakeBoxes[expr:GeoPathParametricFunction[__], _] := InterpretationBox[RowBox[{"GeoPathParametricFunction", "[", ""[Ellipsis]"", "]"}], expr]
Your example:
path = GeoPath[{
Entity["City", {"Boston", "Massachusetts", "UnitedStates"}],
Entity["City", {"Rochester", "NewYork", "UnitedStates"}],
Entity["City", {"Chicago", "Illinois", "UnitedStates"}]
}, "Rhumb"];
gpf = ParametrizeGeoPath[path];
gpf[500]
GeoPosition[{43.0932, -77.0359}]
Manipulate[GeoGraphics[{
path,
GeoMarker[gpf[d]]
},
PlotLabel -> Row[{"Distance: ", Quantity[d, "Kilometers"]}]],
{d, 0, gpf[[1, -1]]}
]
The points returned are very close to the initial path:
ListLinePlot[
GeoDistance[path, g /@ Range[0, 1300, 100]],
TargetUnits -> "Meters",
AxesLabel -> Automatic,
DataRange -> {0, 1300}
]
Excellent work. I will certainly be using some aspects of your answer in other geo data related work I have been doing.
– kickert
Nov 28 at 16:01
add a comment |
Here is a function for finding GeoPositions between 2 cities with certain step
city1 = Entity["City", {"Boston", "Massachusetts", "UnitedStates"}];
city2 = Entity["City", {"Rochester", "NewYork", "UnitedStates"}];
city3 = Entity["City", {"Chicago", "Illinois", "UnitedStates"}];
geopath[c1_, c2_, step_] := Module[{s = First@GeoDistance[c1, c2],
a = GeoDirection[c1, c2]},
GeoPath[NestList[GeoDestination[#,{1000 step,a}]&,c1,Floor[s/step]],"Rhumb"]]
Now if you want to find positions from city1 to city2 every 100 km, type
geopath[city1, city2, 100]
and you will get the positions
GeoPath[{Entity["City", {"Boston", "Massachusetts", "UnitedStates"}],
GeoPosition[{42.5124, -72.2106}], GeoPosition[{42.6928, -73.4044}],
GeoPosition[{42.8732, -74.6017}], GeoPosition[{43.0535, -75.8026}],
GeoPosition[{43.2338, -77.0069}]}, "Rhumb"]
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "387"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f186878%2ffinding-position-at-given-distance-in-a-geopath%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
Here's my attempt to parametrize the path by arclength, where here arclength is GeoLength
.
First I build up a function that can be used on many values:
ParametrizeGeoPath[g_GeoPath, t_] := ParametrizeGeoPath[g][t]
ParametrizeGeoPath[GeoPath[locs_, args___]] :=
Block[{line, nodes, lens, acc, nf, n1, n2, solver},
line = GeoGraphics`GeoEvaluate[GeoPath[locs, args]];
nodes = GeoPosition /@ Reverse[line[[1]], {2}];
lens = QuantityMagnitude[UnitConvert[GeoLength[GeoPath[#, args]]& /@ Partition[nodes, 2, 1], "Kilometers"]];
acc = Accumulate[lens];
nf = Nearest[acc -> {"Index", "Element"}];
GeoPathParametricFunction[acc, nodes, nf, args]
]
Given a target distance, we can invert GeoLength
with FindRoot
:
GeoPathParametricFunction[_, nodes_, __][d_] /; d == 0 := First[nodes]
GeoPathParametricFunction[acc_, nodes_, __][d_] /; d == Last[acc] := Last[nodes]
GeoPathParametricFunction[acc_, nodes_, nf_, args___][d_] /; 0 < d < Last[acc] :=
Block[{i, v, s, n1, n2, dist, root, t = Unique["t"]},
{i, v} = First[nf[d]];
If[v > d, i--];
s = If[i == 0, 0, acc[[i]]];
n1 = nodes[[i+1, 1]];
n2 = nodes[[i+2, 1]];
dist[t_?NumericQ] := s + QuantityMagnitude[UnitConvert[GeoLength[GeoPath[{GeoPosition[n1], GeoPosition[(1-t)n1 + t n2]}, args]], "Kilometers"]];
root = Quiet@FindRoot[dist[t] == d, {t, .5, 0, 1}];
(
GeoPosition[(1-t)n1 + t n2] /. root
) /; MatchQ[root, {t -> _Real}]
]
GeoPathParametricFunction[___][d_?NumericQ] = Indeterminate;
GeoPathParametricFunction /: MakeBoxes[expr:GeoPathParametricFunction[__], _] := InterpretationBox[RowBox[{"GeoPathParametricFunction", "[", ""[Ellipsis]"", "]"}], expr]
Your example:
path = GeoPath[{
Entity["City", {"Boston", "Massachusetts", "UnitedStates"}],
Entity["City", {"Rochester", "NewYork", "UnitedStates"}],
Entity["City", {"Chicago", "Illinois", "UnitedStates"}]
}, "Rhumb"];
gpf = ParametrizeGeoPath[path];
gpf[500]
GeoPosition[{43.0932, -77.0359}]
Manipulate[GeoGraphics[{
path,
GeoMarker[gpf[d]]
},
PlotLabel -> Row[{"Distance: ", Quantity[d, "Kilometers"]}]],
{d, 0, gpf[[1, -1]]}
]
The points returned are very close to the initial path:
ListLinePlot[
GeoDistance[path, g /@ Range[0, 1300, 100]],
TargetUnits -> "Meters",
AxesLabel -> Automatic,
DataRange -> {0, 1300}
]
Excellent work. I will certainly be using some aspects of your answer in other geo data related work I have been doing.
– kickert
Nov 28 at 16:01
add a comment |
Here's my attempt to parametrize the path by arclength, where here arclength is GeoLength
.
First I build up a function that can be used on many values:
ParametrizeGeoPath[g_GeoPath, t_] := ParametrizeGeoPath[g][t]
ParametrizeGeoPath[GeoPath[locs_, args___]] :=
Block[{line, nodes, lens, acc, nf, n1, n2, solver},
line = GeoGraphics`GeoEvaluate[GeoPath[locs, args]];
nodes = GeoPosition /@ Reverse[line[[1]], {2}];
lens = QuantityMagnitude[UnitConvert[GeoLength[GeoPath[#, args]]& /@ Partition[nodes, 2, 1], "Kilometers"]];
acc = Accumulate[lens];
nf = Nearest[acc -> {"Index", "Element"}];
GeoPathParametricFunction[acc, nodes, nf, args]
]
Given a target distance, we can invert GeoLength
with FindRoot
:
GeoPathParametricFunction[_, nodes_, __][d_] /; d == 0 := First[nodes]
GeoPathParametricFunction[acc_, nodes_, __][d_] /; d == Last[acc] := Last[nodes]
GeoPathParametricFunction[acc_, nodes_, nf_, args___][d_] /; 0 < d < Last[acc] :=
Block[{i, v, s, n1, n2, dist, root, t = Unique["t"]},
{i, v} = First[nf[d]];
If[v > d, i--];
s = If[i == 0, 0, acc[[i]]];
n1 = nodes[[i+1, 1]];
n2 = nodes[[i+2, 1]];
dist[t_?NumericQ] := s + QuantityMagnitude[UnitConvert[GeoLength[GeoPath[{GeoPosition[n1], GeoPosition[(1-t)n1 + t n2]}, args]], "Kilometers"]];
root = Quiet@FindRoot[dist[t] == d, {t, .5, 0, 1}];
(
GeoPosition[(1-t)n1 + t n2] /. root
) /; MatchQ[root, {t -> _Real}]
]
GeoPathParametricFunction[___][d_?NumericQ] = Indeterminate;
GeoPathParametricFunction /: MakeBoxes[expr:GeoPathParametricFunction[__], _] := InterpretationBox[RowBox[{"GeoPathParametricFunction", "[", ""[Ellipsis]"", "]"}], expr]
Your example:
path = GeoPath[{
Entity["City", {"Boston", "Massachusetts", "UnitedStates"}],
Entity["City", {"Rochester", "NewYork", "UnitedStates"}],
Entity["City", {"Chicago", "Illinois", "UnitedStates"}]
}, "Rhumb"];
gpf = ParametrizeGeoPath[path];
gpf[500]
GeoPosition[{43.0932, -77.0359}]
Manipulate[GeoGraphics[{
path,
GeoMarker[gpf[d]]
},
PlotLabel -> Row[{"Distance: ", Quantity[d, "Kilometers"]}]],
{d, 0, gpf[[1, -1]]}
]
The points returned are very close to the initial path:
ListLinePlot[
GeoDistance[path, g /@ Range[0, 1300, 100]],
TargetUnits -> "Meters",
AxesLabel -> Automatic,
DataRange -> {0, 1300}
]
Excellent work. I will certainly be using some aspects of your answer in other geo data related work I have been doing.
– kickert
Nov 28 at 16:01
add a comment |
Here's my attempt to parametrize the path by arclength, where here arclength is GeoLength
.
First I build up a function that can be used on many values:
ParametrizeGeoPath[g_GeoPath, t_] := ParametrizeGeoPath[g][t]
ParametrizeGeoPath[GeoPath[locs_, args___]] :=
Block[{line, nodes, lens, acc, nf, n1, n2, solver},
line = GeoGraphics`GeoEvaluate[GeoPath[locs, args]];
nodes = GeoPosition /@ Reverse[line[[1]], {2}];
lens = QuantityMagnitude[UnitConvert[GeoLength[GeoPath[#, args]]& /@ Partition[nodes, 2, 1], "Kilometers"]];
acc = Accumulate[lens];
nf = Nearest[acc -> {"Index", "Element"}];
GeoPathParametricFunction[acc, nodes, nf, args]
]
Given a target distance, we can invert GeoLength
with FindRoot
:
GeoPathParametricFunction[_, nodes_, __][d_] /; d == 0 := First[nodes]
GeoPathParametricFunction[acc_, nodes_, __][d_] /; d == Last[acc] := Last[nodes]
GeoPathParametricFunction[acc_, nodes_, nf_, args___][d_] /; 0 < d < Last[acc] :=
Block[{i, v, s, n1, n2, dist, root, t = Unique["t"]},
{i, v} = First[nf[d]];
If[v > d, i--];
s = If[i == 0, 0, acc[[i]]];
n1 = nodes[[i+1, 1]];
n2 = nodes[[i+2, 1]];
dist[t_?NumericQ] := s + QuantityMagnitude[UnitConvert[GeoLength[GeoPath[{GeoPosition[n1], GeoPosition[(1-t)n1 + t n2]}, args]], "Kilometers"]];
root = Quiet@FindRoot[dist[t] == d, {t, .5, 0, 1}];
(
GeoPosition[(1-t)n1 + t n2] /. root
) /; MatchQ[root, {t -> _Real}]
]
GeoPathParametricFunction[___][d_?NumericQ] = Indeterminate;
GeoPathParametricFunction /: MakeBoxes[expr:GeoPathParametricFunction[__], _] := InterpretationBox[RowBox[{"GeoPathParametricFunction", "[", ""[Ellipsis]"", "]"}], expr]
Your example:
path = GeoPath[{
Entity["City", {"Boston", "Massachusetts", "UnitedStates"}],
Entity["City", {"Rochester", "NewYork", "UnitedStates"}],
Entity["City", {"Chicago", "Illinois", "UnitedStates"}]
}, "Rhumb"];
gpf = ParametrizeGeoPath[path];
gpf[500]
GeoPosition[{43.0932, -77.0359}]
Manipulate[GeoGraphics[{
path,
GeoMarker[gpf[d]]
},
PlotLabel -> Row[{"Distance: ", Quantity[d, "Kilometers"]}]],
{d, 0, gpf[[1, -1]]}
]
The points returned are very close to the initial path:
ListLinePlot[
GeoDistance[path, g /@ Range[0, 1300, 100]],
TargetUnits -> "Meters",
AxesLabel -> Automatic,
DataRange -> {0, 1300}
]
Here's my attempt to parametrize the path by arclength, where here arclength is GeoLength
.
First I build up a function that can be used on many values:
ParametrizeGeoPath[g_GeoPath, t_] := ParametrizeGeoPath[g][t]
ParametrizeGeoPath[GeoPath[locs_, args___]] :=
Block[{line, nodes, lens, acc, nf, n1, n2, solver},
line = GeoGraphics`GeoEvaluate[GeoPath[locs, args]];
nodes = GeoPosition /@ Reverse[line[[1]], {2}];
lens = QuantityMagnitude[UnitConvert[GeoLength[GeoPath[#, args]]& /@ Partition[nodes, 2, 1], "Kilometers"]];
acc = Accumulate[lens];
nf = Nearest[acc -> {"Index", "Element"}];
GeoPathParametricFunction[acc, nodes, nf, args]
]
Given a target distance, we can invert GeoLength
with FindRoot
:
GeoPathParametricFunction[_, nodes_, __][d_] /; d == 0 := First[nodes]
GeoPathParametricFunction[acc_, nodes_, __][d_] /; d == Last[acc] := Last[nodes]
GeoPathParametricFunction[acc_, nodes_, nf_, args___][d_] /; 0 < d < Last[acc] :=
Block[{i, v, s, n1, n2, dist, root, t = Unique["t"]},
{i, v} = First[nf[d]];
If[v > d, i--];
s = If[i == 0, 0, acc[[i]]];
n1 = nodes[[i+1, 1]];
n2 = nodes[[i+2, 1]];
dist[t_?NumericQ] := s + QuantityMagnitude[UnitConvert[GeoLength[GeoPath[{GeoPosition[n1], GeoPosition[(1-t)n1 + t n2]}, args]], "Kilometers"]];
root = Quiet@FindRoot[dist[t] == d, {t, .5, 0, 1}];
(
GeoPosition[(1-t)n1 + t n2] /. root
) /; MatchQ[root, {t -> _Real}]
]
GeoPathParametricFunction[___][d_?NumericQ] = Indeterminate;
GeoPathParametricFunction /: MakeBoxes[expr:GeoPathParametricFunction[__], _] := InterpretationBox[RowBox[{"GeoPathParametricFunction", "[", ""[Ellipsis]"", "]"}], expr]
Your example:
path = GeoPath[{
Entity["City", {"Boston", "Massachusetts", "UnitedStates"}],
Entity["City", {"Rochester", "NewYork", "UnitedStates"}],
Entity["City", {"Chicago", "Illinois", "UnitedStates"}]
}, "Rhumb"];
gpf = ParametrizeGeoPath[path];
gpf[500]
GeoPosition[{43.0932, -77.0359}]
Manipulate[GeoGraphics[{
path,
GeoMarker[gpf[d]]
},
PlotLabel -> Row[{"Distance: ", Quantity[d, "Kilometers"]}]],
{d, 0, gpf[[1, -1]]}
]
The points returned are very close to the initial path:
ListLinePlot[
GeoDistance[path, g /@ Range[0, 1300, 100]],
TargetUnits -> "Meters",
AxesLabel -> Automatic,
DataRange -> {0, 1300}
]
edited Nov 28 at 18:54
answered Nov 28 at 15:52
Chip Hurst
20.2k15686
20.2k15686
Excellent work. I will certainly be using some aspects of your answer in other geo data related work I have been doing.
– kickert
Nov 28 at 16:01
add a comment |
Excellent work. I will certainly be using some aspects of your answer in other geo data related work I have been doing.
– kickert
Nov 28 at 16:01
Excellent work. I will certainly be using some aspects of your answer in other geo data related work I have been doing.
– kickert
Nov 28 at 16:01
Excellent work. I will certainly be using some aspects of your answer in other geo data related work I have been doing.
– kickert
Nov 28 at 16:01
add a comment |
Here is a function for finding GeoPositions between 2 cities with certain step
city1 = Entity["City", {"Boston", "Massachusetts", "UnitedStates"}];
city2 = Entity["City", {"Rochester", "NewYork", "UnitedStates"}];
city3 = Entity["City", {"Chicago", "Illinois", "UnitedStates"}];
geopath[c1_, c2_, step_] := Module[{s = First@GeoDistance[c1, c2],
a = GeoDirection[c1, c2]},
GeoPath[NestList[GeoDestination[#,{1000 step,a}]&,c1,Floor[s/step]],"Rhumb"]]
Now if you want to find positions from city1 to city2 every 100 km, type
geopath[city1, city2, 100]
and you will get the positions
GeoPath[{Entity["City", {"Boston", "Massachusetts", "UnitedStates"}],
GeoPosition[{42.5124, -72.2106}], GeoPosition[{42.6928, -73.4044}],
GeoPosition[{42.8732, -74.6017}], GeoPosition[{43.0535, -75.8026}],
GeoPosition[{43.2338, -77.0069}]}, "Rhumb"]
add a comment |
Here is a function for finding GeoPositions between 2 cities with certain step
city1 = Entity["City", {"Boston", "Massachusetts", "UnitedStates"}];
city2 = Entity["City", {"Rochester", "NewYork", "UnitedStates"}];
city3 = Entity["City", {"Chicago", "Illinois", "UnitedStates"}];
geopath[c1_, c2_, step_] := Module[{s = First@GeoDistance[c1, c2],
a = GeoDirection[c1, c2]},
GeoPath[NestList[GeoDestination[#,{1000 step,a}]&,c1,Floor[s/step]],"Rhumb"]]
Now if you want to find positions from city1 to city2 every 100 km, type
geopath[city1, city2, 100]
and you will get the positions
GeoPath[{Entity["City", {"Boston", "Massachusetts", "UnitedStates"}],
GeoPosition[{42.5124, -72.2106}], GeoPosition[{42.6928, -73.4044}],
GeoPosition[{42.8732, -74.6017}], GeoPosition[{43.0535, -75.8026}],
GeoPosition[{43.2338, -77.0069}]}, "Rhumb"]
add a comment |
Here is a function for finding GeoPositions between 2 cities with certain step
city1 = Entity["City", {"Boston", "Massachusetts", "UnitedStates"}];
city2 = Entity["City", {"Rochester", "NewYork", "UnitedStates"}];
city3 = Entity["City", {"Chicago", "Illinois", "UnitedStates"}];
geopath[c1_, c2_, step_] := Module[{s = First@GeoDistance[c1, c2],
a = GeoDirection[c1, c2]},
GeoPath[NestList[GeoDestination[#,{1000 step,a}]&,c1,Floor[s/step]],"Rhumb"]]
Now if you want to find positions from city1 to city2 every 100 km, type
geopath[city1, city2, 100]
and you will get the positions
GeoPath[{Entity["City", {"Boston", "Massachusetts", "UnitedStates"}],
GeoPosition[{42.5124, -72.2106}], GeoPosition[{42.6928, -73.4044}],
GeoPosition[{42.8732, -74.6017}], GeoPosition[{43.0535, -75.8026}],
GeoPosition[{43.2338, -77.0069}]}, "Rhumb"]
Here is a function for finding GeoPositions between 2 cities with certain step
city1 = Entity["City", {"Boston", "Massachusetts", "UnitedStates"}];
city2 = Entity["City", {"Rochester", "NewYork", "UnitedStates"}];
city3 = Entity["City", {"Chicago", "Illinois", "UnitedStates"}];
geopath[c1_, c2_, step_] := Module[{s = First@GeoDistance[c1, c2],
a = GeoDirection[c1, c2]},
GeoPath[NestList[GeoDestination[#,{1000 step,a}]&,c1,Floor[s/step]],"Rhumb"]]
Now if you want to find positions from city1 to city2 every 100 km, type
geopath[city1, city2, 100]
and you will get the positions
GeoPath[{Entity["City", {"Boston", "Massachusetts", "UnitedStates"}],
GeoPosition[{42.5124, -72.2106}], GeoPosition[{42.6928, -73.4044}],
GeoPosition[{42.8732, -74.6017}], GeoPosition[{43.0535, -75.8026}],
GeoPosition[{43.2338, -77.0069}]}, "Rhumb"]
edited Nov 28 at 15:40
answered Nov 28 at 13:37
J42161217
3,712220
3,712220
add a comment |
add a comment |
Thanks for contributing an answer to Mathematica Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f186878%2ffinding-position-at-given-distance-in-a-geopath%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown