Compute $ int frac{1}{beta_1cdot e^{(gamma+m)cdot t} + e^{gamma cdot t} -beta_2cdot e^{(2gamma + m)cdot t}} ,...
$begingroup$
I am having problems with one integral:
$$ int frac{1}{beta_1cdot e^{(gamma+m)cdot t} + e^{gamma cdot t} -beta_2cdot e^{(2gamma + m)cdot t}} , dt$$
The $gamma$, $beta_i$ and $m$ are all constants. I have tried several things in Mathematica but I haven't been able to solve it. Is there any change of variable that might cone in handy?
integration indefinite-integrals
$endgroup$
add a comment |
$begingroup$
I am having problems with one integral:
$$ int frac{1}{beta_1cdot e^{(gamma+m)cdot t} + e^{gamma cdot t} -beta_2cdot e^{(2gamma + m)cdot t}} , dt$$
The $gamma$, $beta_i$ and $m$ are all constants. I have tried several things in Mathematica but I haven't been able to solve it. Is there any change of variable that might cone in handy?
integration indefinite-integrals
$endgroup$
$begingroup$
maybe let the entire denominator equal u?
$endgroup$
– user29418
Dec 4 '18 at 22:03
$begingroup$
Are the constants positive?
$endgroup$
– Yuri Negometyanov
Jan 7 at 7:46
add a comment |
$begingroup$
I am having problems with one integral:
$$ int frac{1}{beta_1cdot e^{(gamma+m)cdot t} + e^{gamma cdot t} -beta_2cdot e^{(2gamma + m)cdot t}} , dt$$
The $gamma$, $beta_i$ and $m$ are all constants. I have tried several things in Mathematica but I haven't been able to solve it. Is there any change of variable that might cone in handy?
integration indefinite-integrals
$endgroup$
I am having problems with one integral:
$$ int frac{1}{beta_1cdot e^{(gamma+m)cdot t} + e^{gamma cdot t} -beta_2cdot e^{(2gamma + m)cdot t}} , dt$$
The $gamma$, $beta_i$ and $m$ are all constants. I have tried several things in Mathematica but I haven't been able to solve it. Is there any change of variable that might cone in handy?
integration indefinite-integrals
integration indefinite-integrals
edited Dec 4 '18 at 22:19
Did
248k23224463
248k23224463
asked Dec 4 '18 at 21:58
dlealdleal
9210
9210
$begingroup$
maybe let the entire denominator equal u?
$endgroup$
– user29418
Dec 4 '18 at 22:03
$begingroup$
Are the constants positive?
$endgroup$
– Yuri Negometyanov
Jan 7 at 7:46
add a comment |
$begingroup$
maybe let the entire denominator equal u?
$endgroup$
– user29418
Dec 4 '18 at 22:03
$begingroup$
Are the constants positive?
$endgroup$
– Yuri Negometyanov
Jan 7 at 7:46
$begingroup$
maybe let the entire denominator equal u?
$endgroup$
– user29418
Dec 4 '18 at 22:03
$begingroup$
maybe let the entire denominator equal u?
$endgroup$
– user29418
Dec 4 '18 at 22:03
$begingroup$
Are the constants positive?
$endgroup$
– Yuri Negometyanov
Jan 7 at 7:46
$begingroup$
Are the constants positive?
$endgroup$
– Yuri Negometyanov
Jan 7 at 7:46
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Assuming
$$m>0,quad gamma>0,quad beta_1>0,quad beta_2>0,quad t >0,$$
can be written
$$begin{align}
&I= int frac{mathrm dt}{beta_1e^{(gamma,+,m),t} + e^{gamma, t} -beta_2e^{(2gamma,+,m),t}}
= int frac{e^{-gamma,t},mathrm dt}{1-beta_2e^{(gamma,+,m) ,t}+beta_1e^{m,t}}.tag1
end{align}$$
If the ratio $$r=dfrac mgamma$$ can be considered as integer, then function under the integral can be presented as the polynomials ratio,
$$begin{align}
&I= int frac{-e^{-(gamma,+,m),t}e^{-gamma,t},mathrm dt}{beta_2-beta_1e^{-gamma,t}-e^{-(gamma,+,m),t}} = begin{vmatrix}
x=e^{-gamma,t}\
dx=-gamma,e^{-gamma,t}\
end{vmatrix}
=intdfrac{gamma,x^{r+1}mathrm dx}{beta_2-beta_1x - x^{r+1}}.tag2
end{align}$$
I.e. can be obtained closed form of the given integral in the elementary functions.
If this simplification does not satisfy, then the integral $(1)$ can be presented in the form of
$$I = int frac{e^{-(gamma+m),t},mathrm dt}{beta_1-beta_2e^{gamma,t}+e^{-m,t}}.tag3$$
$$beta_1-beta_2e^{gamma,t}+e^{-m,t} = beta_1(1-2yz+z^2) = beta_1,g(z,y),tag3$$
where
$$z=w,e^{-mt/2},quad w=dfrac1{sqrt{beta_1}},quad y=b,e^{-(m-2gamma)/2},quad b=dfrac{beta_2}{2sqrt{beta_1}}.tag4$$
Then can be used expression for the generating function of second-order Chebyshev polynomials in the form of
$$g(z,y) = dfrac1{beta_1}sumlimits_{n=0}^infty U_n(y)z^n,tag5$$
where
$$begin{align}
&U_0(y)=1 = u_{00},\
&U_1(y)=2y = u_{11}y,\
&U_2(y)=4y^2-1 = u_{22}y^2-u_{20},\
&U_3(y)=8y^3-4y = u_{33}y^3 - u_{31}y,\
&U_4(y)=16y^4-12y^2+1=u_{44}y^4-u_{42}y^2+u_{40},\
&U_5(y)=32y^5-32y^3+y = u_{55}y^5-u_{53}y^3+u_{51}y,\
&U_6(y)=64y^6-80y^4+24y^2-1 = u_{66}y^6-u_{64}y^4+u_{62}y^2-u_{60},\
&U_{n}(y) = 2yU_{n-1}(y)-U_{n-2}(y),\
&U_n(y) = sumlimits_{k=0}^{left[frac n2right]}(-1)^k,u_{n,n-2k},y^{n-2k},\
&u_{n,i} = 2 u_{n-1,i-1} - u_{n-2,i},
end{align}tag6$$
$$ {u_{nn}} =
begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 2 & 0 & 0 & 0 & 0 & 0 \
-1 & 0 & 4 & 0 & 0 & 0 & 0 \
0 & -4 & 0 & 8 & 0 & 0 & 0 \
1 & 0 & -12 & 0 & 16 & 0 & 0 \
0 & 1 & 0 & -32 & 0 & 32 & 0 \
-1 & 0 & 24 & 0 & -80 & 0 & 64 \
end{pmatrix}.tag7$$
Therefore, the function under the integral can be presented as easily integrated series of
$$I = dfrac1beta_1int e^{-(gamma+m)t}sumlimits_{n=0}^infty U_n(b,e^{-(m-2gamma)/2})w^n,e^{-nmt/2},mathrm dt,tag8$$
wherein the exponent rates in the every term are negative iff $mge 2gamma.$
Let us calculate the integral.
begin{align}
&I =dfrac1beta_1int e^{-(gamma+m)t}sumlimits_{n=0}^infty w^n,e^{-nmt/2}sumlimits_{k=0}^{left[frac n2right]}(-1)^k,u_{n,n-2k},left(b,e^{-(m-2gamma)/2}right)^{n-2k},mathrm dt\
&=dfrac1beta_1sumlimits_{n=0}^infty sumlimits_{k=0}^{left[frac n2right]}int (-1)^k(wb)^n b^{-2k},u_{n,n-2k},e^{(2k+1-n)gamma+(k-n-1)m},mathrm dt\
&=dfrac1beta_1sumlimits_{n=0}^infty left(dfrac{beta_2}{2beta_1}right)^n sumlimits_{k=0}^{left[frac n2right]}(-1)^k ,u_{n,n-2k} left(dfrac{4beta_1}{beta_2^2}right)^kint,e^{(2k+1-n)gamma+(k-n-1)m},mathrm dt,\
end{align}
$$boxed{I=dfrac1beta_1sumlimits_{n=0}^infty left(dfrac{beta_2}{2beta_1}right)^n sumlimits_{k=0}^{left[frac n2right]}(-1)^k dfrac{u_{n,n-2k}}{(2k+1-n)gamma+(k-n-1)m} left(dfrac{4beta_1}{beta_2^2}right)^k,e^{(2k+1-n)gamma+(k-n-1)m},mathrm dt}.$$
$endgroup$
1
$begingroup$
thank you Yuri! i accepted the answer, but I will definitely come back for some questions!
$endgroup$
– dleal
Jan 8 at 1:14
1
$begingroup$
@dleal You are welcome! It was not easy, but Chebyshev polynomials helped again.
$endgroup$
– Yuri Negometyanov
Jan 8 at 1:43
1
$begingroup$
definitely Chebyshev p. have a wide range of applications, that you master very cleverly ! didn't expect them to pop up in this case ..
$endgroup$
– G Cab
Jan 17 at 22:19
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3026238%2fcompute-int-frac1-beta-1-cdot-e-gammam-cdot-t-e-gamma-cdot-t%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Assuming
$$m>0,quad gamma>0,quad beta_1>0,quad beta_2>0,quad t >0,$$
can be written
$$begin{align}
&I= int frac{mathrm dt}{beta_1e^{(gamma,+,m),t} + e^{gamma, t} -beta_2e^{(2gamma,+,m),t}}
= int frac{e^{-gamma,t},mathrm dt}{1-beta_2e^{(gamma,+,m) ,t}+beta_1e^{m,t}}.tag1
end{align}$$
If the ratio $$r=dfrac mgamma$$ can be considered as integer, then function under the integral can be presented as the polynomials ratio,
$$begin{align}
&I= int frac{-e^{-(gamma,+,m),t}e^{-gamma,t},mathrm dt}{beta_2-beta_1e^{-gamma,t}-e^{-(gamma,+,m),t}} = begin{vmatrix}
x=e^{-gamma,t}\
dx=-gamma,e^{-gamma,t}\
end{vmatrix}
=intdfrac{gamma,x^{r+1}mathrm dx}{beta_2-beta_1x - x^{r+1}}.tag2
end{align}$$
I.e. can be obtained closed form of the given integral in the elementary functions.
If this simplification does not satisfy, then the integral $(1)$ can be presented in the form of
$$I = int frac{e^{-(gamma+m),t},mathrm dt}{beta_1-beta_2e^{gamma,t}+e^{-m,t}}.tag3$$
$$beta_1-beta_2e^{gamma,t}+e^{-m,t} = beta_1(1-2yz+z^2) = beta_1,g(z,y),tag3$$
where
$$z=w,e^{-mt/2},quad w=dfrac1{sqrt{beta_1}},quad y=b,e^{-(m-2gamma)/2},quad b=dfrac{beta_2}{2sqrt{beta_1}}.tag4$$
Then can be used expression for the generating function of second-order Chebyshev polynomials in the form of
$$g(z,y) = dfrac1{beta_1}sumlimits_{n=0}^infty U_n(y)z^n,tag5$$
where
$$begin{align}
&U_0(y)=1 = u_{00},\
&U_1(y)=2y = u_{11}y,\
&U_2(y)=4y^2-1 = u_{22}y^2-u_{20},\
&U_3(y)=8y^3-4y = u_{33}y^3 - u_{31}y,\
&U_4(y)=16y^4-12y^2+1=u_{44}y^4-u_{42}y^2+u_{40},\
&U_5(y)=32y^5-32y^3+y = u_{55}y^5-u_{53}y^3+u_{51}y,\
&U_6(y)=64y^6-80y^4+24y^2-1 = u_{66}y^6-u_{64}y^4+u_{62}y^2-u_{60},\
&U_{n}(y) = 2yU_{n-1}(y)-U_{n-2}(y),\
&U_n(y) = sumlimits_{k=0}^{left[frac n2right]}(-1)^k,u_{n,n-2k},y^{n-2k},\
&u_{n,i} = 2 u_{n-1,i-1} - u_{n-2,i},
end{align}tag6$$
$$ {u_{nn}} =
begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 2 & 0 & 0 & 0 & 0 & 0 \
-1 & 0 & 4 & 0 & 0 & 0 & 0 \
0 & -4 & 0 & 8 & 0 & 0 & 0 \
1 & 0 & -12 & 0 & 16 & 0 & 0 \
0 & 1 & 0 & -32 & 0 & 32 & 0 \
-1 & 0 & 24 & 0 & -80 & 0 & 64 \
end{pmatrix}.tag7$$
Therefore, the function under the integral can be presented as easily integrated series of
$$I = dfrac1beta_1int e^{-(gamma+m)t}sumlimits_{n=0}^infty U_n(b,e^{-(m-2gamma)/2})w^n,e^{-nmt/2},mathrm dt,tag8$$
wherein the exponent rates in the every term are negative iff $mge 2gamma.$
Let us calculate the integral.
begin{align}
&I =dfrac1beta_1int e^{-(gamma+m)t}sumlimits_{n=0}^infty w^n,e^{-nmt/2}sumlimits_{k=0}^{left[frac n2right]}(-1)^k,u_{n,n-2k},left(b,e^{-(m-2gamma)/2}right)^{n-2k},mathrm dt\
&=dfrac1beta_1sumlimits_{n=0}^infty sumlimits_{k=0}^{left[frac n2right]}int (-1)^k(wb)^n b^{-2k},u_{n,n-2k},e^{(2k+1-n)gamma+(k-n-1)m},mathrm dt\
&=dfrac1beta_1sumlimits_{n=0}^infty left(dfrac{beta_2}{2beta_1}right)^n sumlimits_{k=0}^{left[frac n2right]}(-1)^k ,u_{n,n-2k} left(dfrac{4beta_1}{beta_2^2}right)^kint,e^{(2k+1-n)gamma+(k-n-1)m},mathrm dt,\
end{align}
$$boxed{I=dfrac1beta_1sumlimits_{n=0}^infty left(dfrac{beta_2}{2beta_1}right)^n sumlimits_{k=0}^{left[frac n2right]}(-1)^k dfrac{u_{n,n-2k}}{(2k+1-n)gamma+(k-n-1)m} left(dfrac{4beta_1}{beta_2^2}right)^k,e^{(2k+1-n)gamma+(k-n-1)m},mathrm dt}.$$
$endgroup$
1
$begingroup$
thank you Yuri! i accepted the answer, but I will definitely come back for some questions!
$endgroup$
– dleal
Jan 8 at 1:14
1
$begingroup$
@dleal You are welcome! It was not easy, but Chebyshev polynomials helped again.
$endgroup$
– Yuri Negometyanov
Jan 8 at 1:43
1
$begingroup$
definitely Chebyshev p. have a wide range of applications, that you master very cleverly ! didn't expect them to pop up in this case ..
$endgroup$
– G Cab
Jan 17 at 22:19
add a comment |
$begingroup$
Assuming
$$m>0,quad gamma>0,quad beta_1>0,quad beta_2>0,quad t >0,$$
can be written
$$begin{align}
&I= int frac{mathrm dt}{beta_1e^{(gamma,+,m),t} + e^{gamma, t} -beta_2e^{(2gamma,+,m),t}}
= int frac{e^{-gamma,t},mathrm dt}{1-beta_2e^{(gamma,+,m) ,t}+beta_1e^{m,t}}.tag1
end{align}$$
If the ratio $$r=dfrac mgamma$$ can be considered as integer, then function under the integral can be presented as the polynomials ratio,
$$begin{align}
&I= int frac{-e^{-(gamma,+,m),t}e^{-gamma,t},mathrm dt}{beta_2-beta_1e^{-gamma,t}-e^{-(gamma,+,m),t}} = begin{vmatrix}
x=e^{-gamma,t}\
dx=-gamma,e^{-gamma,t}\
end{vmatrix}
=intdfrac{gamma,x^{r+1}mathrm dx}{beta_2-beta_1x - x^{r+1}}.tag2
end{align}$$
I.e. can be obtained closed form of the given integral in the elementary functions.
If this simplification does not satisfy, then the integral $(1)$ can be presented in the form of
$$I = int frac{e^{-(gamma+m),t},mathrm dt}{beta_1-beta_2e^{gamma,t}+e^{-m,t}}.tag3$$
$$beta_1-beta_2e^{gamma,t}+e^{-m,t} = beta_1(1-2yz+z^2) = beta_1,g(z,y),tag3$$
where
$$z=w,e^{-mt/2},quad w=dfrac1{sqrt{beta_1}},quad y=b,e^{-(m-2gamma)/2},quad b=dfrac{beta_2}{2sqrt{beta_1}}.tag4$$
Then can be used expression for the generating function of second-order Chebyshev polynomials in the form of
$$g(z,y) = dfrac1{beta_1}sumlimits_{n=0}^infty U_n(y)z^n,tag5$$
where
$$begin{align}
&U_0(y)=1 = u_{00},\
&U_1(y)=2y = u_{11}y,\
&U_2(y)=4y^2-1 = u_{22}y^2-u_{20},\
&U_3(y)=8y^3-4y = u_{33}y^3 - u_{31}y,\
&U_4(y)=16y^4-12y^2+1=u_{44}y^4-u_{42}y^2+u_{40},\
&U_5(y)=32y^5-32y^3+y = u_{55}y^5-u_{53}y^3+u_{51}y,\
&U_6(y)=64y^6-80y^4+24y^2-1 = u_{66}y^6-u_{64}y^4+u_{62}y^2-u_{60},\
&U_{n}(y) = 2yU_{n-1}(y)-U_{n-2}(y),\
&U_n(y) = sumlimits_{k=0}^{left[frac n2right]}(-1)^k,u_{n,n-2k},y^{n-2k},\
&u_{n,i} = 2 u_{n-1,i-1} - u_{n-2,i},
end{align}tag6$$
$$ {u_{nn}} =
begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 2 & 0 & 0 & 0 & 0 & 0 \
-1 & 0 & 4 & 0 & 0 & 0 & 0 \
0 & -4 & 0 & 8 & 0 & 0 & 0 \
1 & 0 & -12 & 0 & 16 & 0 & 0 \
0 & 1 & 0 & -32 & 0 & 32 & 0 \
-1 & 0 & 24 & 0 & -80 & 0 & 64 \
end{pmatrix}.tag7$$
Therefore, the function under the integral can be presented as easily integrated series of
$$I = dfrac1beta_1int e^{-(gamma+m)t}sumlimits_{n=0}^infty U_n(b,e^{-(m-2gamma)/2})w^n,e^{-nmt/2},mathrm dt,tag8$$
wherein the exponent rates in the every term are negative iff $mge 2gamma.$
Let us calculate the integral.
begin{align}
&I =dfrac1beta_1int e^{-(gamma+m)t}sumlimits_{n=0}^infty w^n,e^{-nmt/2}sumlimits_{k=0}^{left[frac n2right]}(-1)^k,u_{n,n-2k},left(b,e^{-(m-2gamma)/2}right)^{n-2k},mathrm dt\
&=dfrac1beta_1sumlimits_{n=0}^infty sumlimits_{k=0}^{left[frac n2right]}int (-1)^k(wb)^n b^{-2k},u_{n,n-2k},e^{(2k+1-n)gamma+(k-n-1)m},mathrm dt\
&=dfrac1beta_1sumlimits_{n=0}^infty left(dfrac{beta_2}{2beta_1}right)^n sumlimits_{k=0}^{left[frac n2right]}(-1)^k ,u_{n,n-2k} left(dfrac{4beta_1}{beta_2^2}right)^kint,e^{(2k+1-n)gamma+(k-n-1)m},mathrm dt,\
end{align}
$$boxed{I=dfrac1beta_1sumlimits_{n=0}^infty left(dfrac{beta_2}{2beta_1}right)^n sumlimits_{k=0}^{left[frac n2right]}(-1)^k dfrac{u_{n,n-2k}}{(2k+1-n)gamma+(k-n-1)m} left(dfrac{4beta_1}{beta_2^2}right)^k,e^{(2k+1-n)gamma+(k-n-1)m},mathrm dt}.$$
$endgroup$
1
$begingroup$
thank you Yuri! i accepted the answer, but I will definitely come back for some questions!
$endgroup$
– dleal
Jan 8 at 1:14
1
$begingroup$
@dleal You are welcome! It was not easy, but Chebyshev polynomials helped again.
$endgroup$
– Yuri Negometyanov
Jan 8 at 1:43
1
$begingroup$
definitely Chebyshev p. have a wide range of applications, that you master very cleverly ! didn't expect them to pop up in this case ..
$endgroup$
– G Cab
Jan 17 at 22:19
add a comment |
$begingroup$
Assuming
$$m>0,quad gamma>0,quad beta_1>0,quad beta_2>0,quad t >0,$$
can be written
$$begin{align}
&I= int frac{mathrm dt}{beta_1e^{(gamma,+,m),t} + e^{gamma, t} -beta_2e^{(2gamma,+,m),t}}
= int frac{e^{-gamma,t},mathrm dt}{1-beta_2e^{(gamma,+,m) ,t}+beta_1e^{m,t}}.tag1
end{align}$$
If the ratio $$r=dfrac mgamma$$ can be considered as integer, then function under the integral can be presented as the polynomials ratio,
$$begin{align}
&I= int frac{-e^{-(gamma,+,m),t}e^{-gamma,t},mathrm dt}{beta_2-beta_1e^{-gamma,t}-e^{-(gamma,+,m),t}} = begin{vmatrix}
x=e^{-gamma,t}\
dx=-gamma,e^{-gamma,t}\
end{vmatrix}
=intdfrac{gamma,x^{r+1}mathrm dx}{beta_2-beta_1x - x^{r+1}}.tag2
end{align}$$
I.e. can be obtained closed form of the given integral in the elementary functions.
If this simplification does not satisfy, then the integral $(1)$ can be presented in the form of
$$I = int frac{e^{-(gamma+m),t},mathrm dt}{beta_1-beta_2e^{gamma,t}+e^{-m,t}}.tag3$$
$$beta_1-beta_2e^{gamma,t}+e^{-m,t} = beta_1(1-2yz+z^2) = beta_1,g(z,y),tag3$$
where
$$z=w,e^{-mt/2},quad w=dfrac1{sqrt{beta_1}},quad y=b,e^{-(m-2gamma)/2},quad b=dfrac{beta_2}{2sqrt{beta_1}}.tag4$$
Then can be used expression for the generating function of second-order Chebyshev polynomials in the form of
$$g(z,y) = dfrac1{beta_1}sumlimits_{n=0}^infty U_n(y)z^n,tag5$$
where
$$begin{align}
&U_0(y)=1 = u_{00},\
&U_1(y)=2y = u_{11}y,\
&U_2(y)=4y^2-1 = u_{22}y^2-u_{20},\
&U_3(y)=8y^3-4y = u_{33}y^3 - u_{31}y,\
&U_4(y)=16y^4-12y^2+1=u_{44}y^4-u_{42}y^2+u_{40},\
&U_5(y)=32y^5-32y^3+y = u_{55}y^5-u_{53}y^3+u_{51}y,\
&U_6(y)=64y^6-80y^4+24y^2-1 = u_{66}y^6-u_{64}y^4+u_{62}y^2-u_{60},\
&U_{n}(y) = 2yU_{n-1}(y)-U_{n-2}(y),\
&U_n(y) = sumlimits_{k=0}^{left[frac n2right]}(-1)^k,u_{n,n-2k},y^{n-2k},\
&u_{n,i} = 2 u_{n-1,i-1} - u_{n-2,i},
end{align}tag6$$
$$ {u_{nn}} =
begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 2 & 0 & 0 & 0 & 0 & 0 \
-1 & 0 & 4 & 0 & 0 & 0 & 0 \
0 & -4 & 0 & 8 & 0 & 0 & 0 \
1 & 0 & -12 & 0 & 16 & 0 & 0 \
0 & 1 & 0 & -32 & 0 & 32 & 0 \
-1 & 0 & 24 & 0 & -80 & 0 & 64 \
end{pmatrix}.tag7$$
Therefore, the function under the integral can be presented as easily integrated series of
$$I = dfrac1beta_1int e^{-(gamma+m)t}sumlimits_{n=0}^infty U_n(b,e^{-(m-2gamma)/2})w^n,e^{-nmt/2},mathrm dt,tag8$$
wherein the exponent rates in the every term are negative iff $mge 2gamma.$
Let us calculate the integral.
begin{align}
&I =dfrac1beta_1int e^{-(gamma+m)t}sumlimits_{n=0}^infty w^n,e^{-nmt/2}sumlimits_{k=0}^{left[frac n2right]}(-1)^k,u_{n,n-2k},left(b,e^{-(m-2gamma)/2}right)^{n-2k},mathrm dt\
&=dfrac1beta_1sumlimits_{n=0}^infty sumlimits_{k=0}^{left[frac n2right]}int (-1)^k(wb)^n b^{-2k},u_{n,n-2k},e^{(2k+1-n)gamma+(k-n-1)m},mathrm dt\
&=dfrac1beta_1sumlimits_{n=0}^infty left(dfrac{beta_2}{2beta_1}right)^n sumlimits_{k=0}^{left[frac n2right]}(-1)^k ,u_{n,n-2k} left(dfrac{4beta_1}{beta_2^2}right)^kint,e^{(2k+1-n)gamma+(k-n-1)m},mathrm dt,\
end{align}
$$boxed{I=dfrac1beta_1sumlimits_{n=0}^infty left(dfrac{beta_2}{2beta_1}right)^n sumlimits_{k=0}^{left[frac n2right]}(-1)^k dfrac{u_{n,n-2k}}{(2k+1-n)gamma+(k-n-1)m} left(dfrac{4beta_1}{beta_2^2}right)^k,e^{(2k+1-n)gamma+(k-n-1)m},mathrm dt}.$$
$endgroup$
Assuming
$$m>0,quad gamma>0,quad beta_1>0,quad beta_2>0,quad t >0,$$
can be written
$$begin{align}
&I= int frac{mathrm dt}{beta_1e^{(gamma,+,m),t} + e^{gamma, t} -beta_2e^{(2gamma,+,m),t}}
= int frac{e^{-gamma,t},mathrm dt}{1-beta_2e^{(gamma,+,m) ,t}+beta_1e^{m,t}}.tag1
end{align}$$
If the ratio $$r=dfrac mgamma$$ can be considered as integer, then function under the integral can be presented as the polynomials ratio,
$$begin{align}
&I= int frac{-e^{-(gamma,+,m),t}e^{-gamma,t},mathrm dt}{beta_2-beta_1e^{-gamma,t}-e^{-(gamma,+,m),t}} = begin{vmatrix}
x=e^{-gamma,t}\
dx=-gamma,e^{-gamma,t}\
end{vmatrix}
=intdfrac{gamma,x^{r+1}mathrm dx}{beta_2-beta_1x - x^{r+1}}.tag2
end{align}$$
I.e. can be obtained closed form of the given integral in the elementary functions.
If this simplification does not satisfy, then the integral $(1)$ can be presented in the form of
$$I = int frac{e^{-(gamma+m),t},mathrm dt}{beta_1-beta_2e^{gamma,t}+e^{-m,t}}.tag3$$
$$beta_1-beta_2e^{gamma,t}+e^{-m,t} = beta_1(1-2yz+z^2) = beta_1,g(z,y),tag3$$
where
$$z=w,e^{-mt/2},quad w=dfrac1{sqrt{beta_1}},quad y=b,e^{-(m-2gamma)/2},quad b=dfrac{beta_2}{2sqrt{beta_1}}.tag4$$
Then can be used expression for the generating function of second-order Chebyshev polynomials in the form of
$$g(z,y) = dfrac1{beta_1}sumlimits_{n=0}^infty U_n(y)z^n,tag5$$
where
$$begin{align}
&U_0(y)=1 = u_{00},\
&U_1(y)=2y = u_{11}y,\
&U_2(y)=4y^2-1 = u_{22}y^2-u_{20},\
&U_3(y)=8y^3-4y = u_{33}y^3 - u_{31}y,\
&U_4(y)=16y^4-12y^2+1=u_{44}y^4-u_{42}y^2+u_{40},\
&U_5(y)=32y^5-32y^3+y = u_{55}y^5-u_{53}y^3+u_{51}y,\
&U_6(y)=64y^6-80y^4+24y^2-1 = u_{66}y^6-u_{64}y^4+u_{62}y^2-u_{60},\
&U_{n}(y) = 2yU_{n-1}(y)-U_{n-2}(y),\
&U_n(y) = sumlimits_{k=0}^{left[frac n2right]}(-1)^k,u_{n,n-2k},y^{n-2k},\
&u_{n,i} = 2 u_{n-1,i-1} - u_{n-2,i},
end{align}tag6$$
$$ {u_{nn}} =
begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 2 & 0 & 0 & 0 & 0 & 0 \
-1 & 0 & 4 & 0 & 0 & 0 & 0 \
0 & -4 & 0 & 8 & 0 & 0 & 0 \
1 & 0 & -12 & 0 & 16 & 0 & 0 \
0 & 1 & 0 & -32 & 0 & 32 & 0 \
-1 & 0 & 24 & 0 & -80 & 0 & 64 \
end{pmatrix}.tag7$$
Therefore, the function under the integral can be presented as easily integrated series of
$$I = dfrac1beta_1int e^{-(gamma+m)t}sumlimits_{n=0}^infty U_n(b,e^{-(m-2gamma)/2})w^n,e^{-nmt/2},mathrm dt,tag8$$
wherein the exponent rates in the every term are negative iff $mge 2gamma.$
Let us calculate the integral.
begin{align}
&I =dfrac1beta_1int e^{-(gamma+m)t}sumlimits_{n=0}^infty w^n,e^{-nmt/2}sumlimits_{k=0}^{left[frac n2right]}(-1)^k,u_{n,n-2k},left(b,e^{-(m-2gamma)/2}right)^{n-2k},mathrm dt\
&=dfrac1beta_1sumlimits_{n=0}^infty sumlimits_{k=0}^{left[frac n2right]}int (-1)^k(wb)^n b^{-2k},u_{n,n-2k},e^{(2k+1-n)gamma+(k-n-1)m},mathrm dt\
&=dfrac1beta_1sumlimits_{n=0}^infty left(dfrac{beta_2}{2beta_1}right)^n sumlimits_{k=0}^{left[frac n2right]}(-1)^k ,u_{n,n-2k} left(dfrac{4beta_1}{beta_2^2}right)^kint,e^{(2k+1-n)gamma+(k-n-1)m},mathrm dt,\
end{align}
$$boxed{I=dfrac1beta_1sumlimits_{n=0}^infty left(dfrac{beta_2}{2beta_1}right)^n sumlimits_{k=0}^{left[frac n2right]}(-1)^k dfrac{u_{n,n-2k}}{(2k+1-n)gamma+(k-n-1)m} left(dfrac{4beta_1}{beta_2^2}right)^k,e^{(2k+1-n)gamma+(k-n-1)m},mathrm dt}.$$
edited Jan 7 at 18:47
answered Jan 7 at 3:44
Yuri NegometyanovYuri Negometyanov
11.8k1729
11.8k1729
1
$begingroup$
thank you Yuri! i accepted the answer, but I will definitely come back for some questions!
$endgroup$
– dleal
Jan 8 at 1:14
1
$begingroup$
@dleal You are welcome! It was not easy, but Chebyshev polynomials helped again.
$endgroup$
– Yuri Negometyanov
Jan 8 at 1:43
1
$begingroup$
definitely Chebyshev p. have a wide range of applications, that you master very cleverly ! didn't expect them to pop up in this case ..
$endgroup$
– G Cab
Jan 17 at 22:19
add a comment |
1
$begingroup$
thank you Yuri! i accepted the answer, but I will definitely come back for some questions!
$endgroup$
– dleal
Jan 8 at 1:14
1
$begingroup$
@dleal You are welcome! It was not easy, but Chebyshev polynomials helped again.
$endgroup$
– Yuri Negometyanov
Jan 8 at 1:43
1
$begingroup$
definitely Chebyshev p. have a wide range of applications, that you master very cleverly ! didn't expect them to pop up in this case ..
$endgroup$
– G Cab
Jan 17 at 22:19
1
1
$begingroup$
thank you Yuri! i accepted the answer, but I will definitely come back for some questions!
$endgroup$
– dleal
Jan 8 at 1:14
$begingroup$
thank you Yuri! i accepted the answer, but I will definitely come back for some questions!
$endgroup$
– dleal
Jan 8 at 1:14
1
1
$begingroup$
@dleal You are welcome! It was not easy, but Chebyshev polynomials helped again.
$endgroup$
– Yuri Negometyanov
Jan 8 at 1:43
$begingroup$
@dleal You are welcome! It was not easy, but Chebyshev polynomials helped again.
$endgroup$
– Yuri Negometyanov
Jan 8 at 1:43
1
1
$begingroup$
definitely Chebyshev p. have a wide range of applications, that you master very cleverly ! didn't expect them to pop up in this case ..
$endgroup$
– G Cab
Jan 17 at 22:19
$begingroup$
definitely Chebyshev p. have a wide range of applications, that you master very cleverly ! didn't expect them to pop up in this case ..
$endgroup$
– G Cab
Jan 17 at 22:19
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3026238%2fcompute-int-frac1-beta-1-cdot-e-gammam-cdot-t-e-gamma-cdot-t%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
maybe let the entire denominator equal u?
$endgroup$
– user29418
Dec 4 '18 at 22:03
$begingroup$
Are the constants positive?
$endgroup$
– Yuri Negometyanov
Jan 7 at 7:46