Backward Kolmogorov equation to find probability
$begingroup$
From lecture notes in a course on SDE's. We are tasked with using the backward Kolmogorov equation to find.
$mathbb{P}^{X_t=x}left(X_Tgeq2 right)$
I am confused by the terminology here. We are looking for the probability that a process at time $t$ is equal to $x$, conditioned on the terminal value being equal to $2$. Do we then solve for the density in the backward equation and integrate over the time interval?
probability-theory stochastic-processes stochastic-calculus markov-process sde
$endgroup$
add a comment |
$begingroup$
From lecture notes in a course on SDE's. We are tasked with using the backward Kolmogorov equation to find.
$mathbb{P}^{X_t=x}left(X_Tgeq2 right)$
I am confused by the terminology here. We are looking for the probability that a process at time $t$ is equal to $x$, conditioned on the terminal value being equal to $2$. Do we then solve for the density in the backward equation and integrate over the time interval?
probability-theory stochastic-processes stochastic-calculus markov-process sde
$endgroup$
1
$begingroup$
$P^{X_t=x}(X_Tge 2)$ denotes the probability that $X_Tge 2$ given $X_t=x$ (not the probability that $X_t=x$ given $X_Tge 2$).
$endgroup$
– AddSup
Nov 30 '18 at 6:25
$begingroup$
Thanks for the clarification. I would then solve for the density in the backwards equation, which would give me a probability density $k(x,t)$, expressed as a function of the initial conditions. Would I then just integrate the relevant area in the probability space?
$endgroup$
– thaumoctopus
Dec 3 '18 at 20:52
add a comment |
$begingroup$
From lecture notes in a course on SDE's. We are tasked with using the backward Kolmogorov equation to find.
$mathbb{P}^{X_t=x}left(X_Tgeq2 right)$
I am confused by the terminology here. We are looking for the probability that a process at time $t$ is equal to $x$, conditioned on the terminal value being equal to $2$. Do we then solve for the density in the backward equation and integrate over the time interval?
probability-theory stochastic-processes stochastic-calculus markov-process sde
$endgroup$
From lecture notes in a course on SDE's. We are tasked with using the backward Kolmogorov equation to find.
$mathbb{P}^{X_t=x}left(X_Tgeq2 right)$
I am confused by the terminology here. We are looking for the probability that a process at time $t$ is equal to $x$, conditioned on the terminal value being equal to $2$. Do we then solve for the density in the backward equation and integrate over the time interval?
probability-theory stochastic-processes stochastic-calculus markov-process sde
probability-theory stochastic-processes stochastic-calculus markov-process sde
asked Nov 29 '18 at 18:22
thaumoctopusthaumoctopus
9519
9519
1
$begingroup$
$P^{X_t=x}(X_Tge 2)$ denotes the probability that $X_Tge 2$ given $X_t=x$ (not the probability that $X_t=x$ given $X_Tge 2$).
$endgroup$
– AddSup
Nov 30 '18 at 6:25
$begingroup$
Thanks for the clarification. I would then solve for the density in the backwards equation, which would give me a probability density $k(x,t)$, expressed as a function of the initial conditions. Would I then just integrate the relevant area in the probability space?
$endgroup$
– thaumoctopus
Dec 3 '18 at 20:52
add a comment |
1
$begingroup$
$P^{X_t=x}(X_Tge 2)$ denotes the probability that $X_Tge 2$ given $X_t=x$ (not the probability that $X_t=x$ given $X_Tge 2$).
$endgroup$
– AddSup
Nov 30 '18 at 6:25
$begingroup$
Thanks for the clarification. I would then solve for the density in the backwards equation, which would give me a probability density $k(x,t)$, expressed as a function of the initial conditions. Would I then just integrate the relevant area in the probability space?
$endgroup$
– thaumoctopus
Dec 3 '18 at 20:52
1
1
$begingroup$
$P^{X_t=x}(X_Tge 2)$ denotes the probability that $X_Tge 2$ given $X_t=x$ (not the probability that $X_t=x$ given $X_Tge 2$).
$endgroup$
– AddSup
Nov 30 '18 at 6:25
$begingroup$
$P^{X_t=x}(X_Tge 2)$ denotes the probability that $X_Tge 2$ given $X_t=x$ (not the probability that $X_t=x$ given $X_Tge 2$).
$endgroup$
– AddSup
Nov 30 '18 at 6:25
$begingroup$
Thanks for the clarification. I would then solve for the density in the backwards equation, which would give me a probability density $k(x,t)$, expressed as a function of the initial conditions. Would I then just integrate the relevant area in the probability space?
$endgroup$
– thaumoctopus
Dec 3 '18 at 20:52
$begingroup$
Thanks for the clarification. I would then solve for the density in the backwards equation, which would give me a probability density $k(x,t)$, expressed as a function of the initial conditions. Would I then just integrate the relevant area in the probability space?
$endgroup$
– thaumoctopus
Dec 3 '18 at 20:52
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3018991%2fbackward-kolmogorov-equation-to-find-probability%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3018991%2fbackward-kolmogorov-equation-to-find-probability%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
$P^{X_t=x}(X_Tge 2)$ denotes the probability that $X_Tge 2$ given $X_t=x$ (not the probability that $X_t=x$ given $X_Tge 2$).
$endgroup$
– AddSup
Nov 30 '18 at 6:25
$begingroup$
Thanks for the clarification. I would then solve for the density in the backwards equation, which would give me a probability density $k(x,t)$, expressed as a function of the initial conditions. Would I then just integrate the relevant area in the probability space?
$endgroup$
– thaumoctopus
Dec 3 '18 at 20:52