7 elementary exercises about series convergence: are my solutions correct?












1












$begingroup$



  1. Investigate convergence of $sum_{n=2}^{infty} frac{1}{n^{ln n}}$.


$frac{1}{n^{ln n}}<frac{1}{n^2}, sum frac{1}{n^2}=pi/6$, so the original series converges.
(To verify the convergence of $sumfrac{1}{n^2}$, we can first apply the telescopic equivalence, and then use the ratio test).




  1. Investigate convergence of $sum frac{2^ncdot (n!)^2}{4cdot 11 cdot cdots cdot (2n^2+n+1)}$.


Let's use Raabe's test.



$n bigg( frac{2^ncdot (n!)^2}{4cdot 11 cdot cdots cdot (2n^2+n+1)}cdot frac{4cdot 11 cdot cdots cdot (2n^2+n+1) cdot (2(n+1)^2+(n+1)+1)}{2^ncdot (n!)^2cdot 2 cdot (n+1)^2} -1 bigg)= n bigg( frac{1}{1}cdot frac{ 2(n+1)^2+(n+1)+1}{2 cdot (n+1)^2} -1 bigg) = n bigg( frac{1}{1}cdot frac{ 2(n+1)^2+(n+1)+1 - 2 cdot (n+1)^2}{2 cdot (n+1)^2} bigg) = n bigg( frac{ (n+1)+1}{2 cdot (n+1)^2} bigg) = frac{n^2 + o(n^2)}{2n^2 + o(n^2)}longrightarrow frac{1}{2}<1,$



so the series diverges.




  1. Investigate convergence of $sum (1+frac{2n^2+n}{3n^3-nsin n})^{frac{n^2 + n cos n}{n+sin n}}$.


We know that, for a series to converge, it's necessary for its $a_n$ to tend to zero.



$(1+frac{2n^2+n}{3n^3-nsin n})^{frac{n^2 + n cos n}{n+sin n}}$



The fraction inside tends to zero (dividing the nominator and the denominator by $n^2$), so we look for the exponent:



$(1+frac{2n^2+n}{3n^3-nsin n})^{frac{n^2 + n cos n}{n+sin n} cdot frac{2n^2+n}{3n^3-nsin n} cdot frac{3n^3-nsin n}{2n^2+n} }$



$e^{{frac{n^2 + n cos n}{n+sin n} cdot frac{2n^2+n}{3n^3-nsin n}}}$



$e^{frac{2n^4 + o(n^4)}{3n^4+o(n^4)}}$



$e^{frac{2}{3}} neq 0$,



so the series diverges.




  1. Investigate convergence of $sum frac{1}{(ln n)^{ln n}}$.


Convergence of $frac{1}{(ln n)^{ln n}} iff $ convergence of $frac{2^n}{(n ln 2)^{n ln 2}}$.



Applying Cauchy's test,



$limbigg( frac{2^n}{(n ln 2)^{n ln 2}} bigg)^{1/n}=limfrac{2}{(n ln 2)^{ ln 2}}=0<1$, so the series converges.



My intuition tells me that in terms of limits and convergence, $frac{2^n}{(n ln 2)^{n ln 2}}$ must be in some sense equivalent to the $frac{2^n}{n^{n}}$, which is converging big time (ratio test to see). I will be very grateful if someone could tell me how to formalize the idea, or if it is even correct at all.




  1. Investigate convergence of $sum frac{2cdot 5 cdot cdots cdot (3n-4)}{3^n cdot n!}$.


Let's use Raabe's test.



$lim n bigg( frac{2cdot 5 cdot cdots cdot (3n-4)}{3^n cdot n!} cdot frac{3^n cdot n! cdot 3 cdot (n+1)}{2cdot 5 cdot cdots cdot (3n-4) cdot (3(n+1)-4)} - 1 bigg)$



$lim n bigg( frac{1}{1} cdot frac{ 3 cdot (n+1)}{3(n+1)-4} - 1 bigg)$



$lim n bigg( frac{3n+3-3n+1}{3n-1} bigg)$



$lim bigg( frac{4n}{3n-1} bigg)$



$frac{4}{3} > 1,$



so the series converges.





  1. $sum a_n$ is absolutely converging (i.e. $sum |a_n|$ converges), and $sum b_n$ is diverging. Does $sum a_n+b_n$ converge?


I am having a hard time with this one.



We know from the lectures that if $sum a_n$ is absolutely converging, then $sum a_n$ is converging.



From the definition, $forall epsilon>0 exists N_a : forall n, m>N_a Longrightarrow |a_n+cdots+a_m|<epsilon.$



Now, I'm not sure if I have written the negation correctly:



$exists epsilon>0 forall N_b exists n, m>N_b Longrightarrow |b_n+cdots+b_m|geepsilon.$



Taking the difference of one from another, I can get the desired (?)



$|a_n+cdots+a_m|-epsilon<epsilon-|b_n+cdots+b_m|$



$|a_n+cdots+a_m|+|b_n+cdots+b_m|<2epsilon,$



now, from the triangle inequality,



$|a_n+cdots+a_m+b_n+cdots+b_m|<2epsilon.$



(The series is diverging).



I feel like neglecting the quantors can land me in trouble.




  1. With what range of values of $alpha>0$ does $sum frac{3^n}{(2n)!n^{alpha}}$ converge?


If we prove that with $alpha=0$ the series converges, then we have shown it converges for all the positive alphas. Ratio test tells us



$frac{3^ncdot 3}{(2n)! cdot (2n+1) cdot (2n+2)}cdot frac{(2n)!}{3^n}$



$frac{3}{(2n+1) cdot (2n+2)} longrightarrow 0<1,$



so the series converges.



Thank you very much. Alternative proofs are welcome.










share|cite|improve this question









$endgroup$

















    1












    $begingroup$



    1. Investigate convergence of $sum_{n=2}^{infty} frac{1}{n^{ln n}}$.


    $frac{1}{n^{ln n}}<frac{1}{n^2}, sum frac{1}{n^2}=pi/6$, so the original series converges.
    (To verify the convergence of $sumfrac{1}{n^2}$, we can first apply the telescopic equivalence, and then use the ratio test).




    1. Investigate convergence of $sum frac{2^ncdot (n!)^2}{4cdot 11 cdot cdots cdot (2n^2+n+1)}$.


    Let's use Raabe's test.



    $n bigg( frac{2^ncdot (n!)^2}{4cdot 11 cdot cdots cdot (2n^2+n+1)}cdot frac{4cdot 11 cdot cdots cdot (2n^2+n+1) cdot (2(n+1)^2+(n+1)+1)}{2^ncdot (n!)^2cdot 2 cdot (n+1)^2} -1 bigg)= n bigg( frac{1}{1}cdot frac{ 2(n+1)^2+(n+1)+1}{2 cdot (n+1)^2} -1 bigg) = n bigg( frac{1}{1}cdot frac{ 2(n+1)^2+(n+1)+1 - 2 cdot (n+1)^2}{2 cdot (n+1)^2} bigg) = n bigg( frac{ (n+1)+1}{2 cdot (n+1)^2} bigg) = frac{n^2 + o(n^2)}{2n^2 + o(n^2)}longrightarrow frac{1}{2}<1,$



    so the series diverges.




    1. Investigate convergence of $sum (1+frac{2n^2+n}{3n^3-nsin n})^{frac{n^2 + n cos n}{n+sin n}}$.


    We know that, for a series to converge, it's necessary for its $a_n$ to tend to zero.



    $(1+frac{2n^2+n}{3n^3-nsin n})^{frac{n^2 + n cos n}{n+sin n}}$



    The fraction inside tends to zero (dividing the nominator and the denominator by $n^2$), so we look for the exponent:



    $(1+frac{2n^2+n}{3n^3-nsin n})^{frac{n^2 + n cos n}{n+sin n} cdot frac{2n^2+n}{3n^3-nsin n} cdot frac{3n^3-nsin n}{2n^2+n} }$



    $e^{{frac{n^2 + n cos n}{n+sin n} cdot frac{2n^2+n}{3n^3-nsin n}}}$



    $e^{frac{2n^4 + o(n^4)}{3n^4+o(n^4)}}$



    $e^{frac{2}{3}} neq 0$,



    so the series diverges.




    1. Investigate convergence of $sum frac{1}{(ln n)^{ln n}}$.


    Convergence of $frac{1}{(ln n)^{ln n}} iff $ convergence of $frac{2^n}{(n ln 2)^{n ln 2}}$.



    Applying Cauchy's test,



    $limbigg( frac{2^n}{(n ln 2)^{n ln 2}} bigg)^{1/n}=limfrac{2}{(n ln 2)^{ ln 2}}=0<1$, so the series converges.



    My intuition tells me that in terms of limits and convergence, $frac{2^n}{(n ln 2)^{n ln 2}}$ must be in some sense equivalent to the $frac{2^n}{n^{n}}$, which is converging big time (ratio test to see). I will be very grateful if someone could tell me how to formalize the idea, or if it is even correct at all.




    1. Investigate convergence of $sum frac{2cdot 5 cdot cdots cdot (3n-4)}{3^n cdot n!}$.


    Let's use Raabe's test.



    $lim n bigg( frac{2cdot 5 cdot cdots cdot (3n-4)}{3^n cdot n!} cdot frac{3^n cdot n! cdot 3 cdot (n+1)}{2cdot 5 cdot cdots cdot (3n-4) cdot (3(n+1)-4)} - 1 bigg)$



    $lim n bigg( frac{1}{1} cdot frac{ 3 cdot (n+1)}{3(n+1)-4} - 1 bigg)$



    $lim n bigg( frac{3n+3-3n+1}{3n-1} bigg)$



    $lim bigg( frac{4n}{3n-1} bigg)$



    $frac{4}{3} > 1,$



    so the series converges.





    1. $sum a_n$ is absolutely converging (i.e. $sum |a_n|$ converges), and $sum b_n$ is diverging. Does $sum a_n+b_n$ converge?


    I am having a hard time with this one.



    We know from the lectures that if $sum a_n$ is absolutely converging, then $sum a_n$ is converging.



    From the definition, $forall epsilon>0 exists N_a : forall n, m>N_a Longrightarrow |a_n+cdots+a_m|<epsilon.$



    Now, I'm not sure if I have written the negation correctly:



    $exists epsilon>0 forall N_b exists n, m>N_b Longrightarrow |b_n+cdots+b_m|geepsilon.$



    Taking the difference of one from another, I can get the desired (?)



    $|a_n+cdots+a_m|-epsilon<epsilon-|b_n+cdots+b_m|$



    $|a_n+cdots+a_m|+|b_n+cdots+b_m|<2epsilon,$



    now, from the triangle inequality,



    $|a_n+cdots+a_m+b_n+cdots+b_m|<2epsilon.$



    (The series is diverging).



    I feel like neglecting the quantors can land me in trouble.




    1. With what range of values of $alpha>0$ does $sum frac{3^n}{(2n)!n^{alpha}}$ converge?


    If we prove that with $alpha=0$ the series converges, then we have shown it converges for all the positive alphas. Ratio test tells us



    $frac{3^ncdot 3}{(2n)! cdot (2n+1) cdot (2n+2)}cdot frac{(2n)!}{3^n}$



    $frac{3}{(2n+1) cdot (2n+2)} longrightarrow 0<1,$



    so the series converges.



    Thank you very much. Alternative proofs are welcome.










    share|cite|improve this question









    $endgroup$















      1












      1








      1





      $begingroup$



      1. Investigate convergence of $sum_{n=2}^{infty} frac{1}{n^{ln n}}$.


      $frac{1}{n^{ln n}}<frac{1}{n^2}, sum frac{1}{n^2}=pi/6$, so the original series converges.
      (To verify the convergence of $sumfrac{1}{n^2}$, we can first apply the telescopic equivalence, and then use the ratio test).




      1. Investigate convergence of $sum frac{2^ncdot (n!)^2}{4cdot 11 cdot cdots cdot (2n^2+n+1)}$.


      Let's use Raabe's test.



      $n bigg( frac{2^ncdot (n!)^2}{4cdot 11 cdot cdots cdot (2n^2+n+1)}cdot frac{4cdot 11 cdot cdots cdot (2n^2+n+1) cdot (2(n+1)^2+(n+1)+1)}{2^ncdot (n!)^2cdot 2 cdot (n+1)^2} -1 bigg)= n bigg( frac{1}{1}cdot frac{ 2(n+1)^2+(n+1)+1}{2 cdot (n+1)^2} -1 bigg) = n bigg( frac{1}{1}cdot frac{ 2(n+1)^2+(n+1)+1 - 2 cdot (n+1)^2}{2 cdot (n+1)^2} bigg) = n bigg( frac{ (n+1)+1}{2 cdot (n+1)^2} bigg) = frac{n^2 + o(n^2)}{2n^2 + o(n^2)}longrightarrow frac{1}{2}<1,$



      so the series diverges.




      1. Investigate convergence of $sum (1+frac{2n^2+n}{3n^3-nsin n})^{frac{n^2 + n cos n}{n+sin n}}$.


      We know that, for a series to converge, it's necessary for its $a_n$ to tend to zero.



      $(1+frac{2n^2+n}{3n^3-nsin n})^{frac{n^2 + n cos n}{n+sin n}}$



      The fraction inside tends to zero (dividing the nominator and the denominator by $n^2$), so we look for the exponent:



      $(1+frac{2n^2+n}{3n^3-nsin n})^{frac{n^2 + n cos n}{n+sin n} cdot frac{2n^2+n}{3n^3-nsin n} cdot frac{3n^3-nsin n}{2n^2+n} }$



      $e^{{frac{n^2 + n cos n}{n+sin n} cdot frac{2n^2+n}{3n^3-nsin n}}}$



      $e^{frac{2n^4 + o(n^4)}{3n^4+o(n^4)}}$



      $e^{frac{2}{3}} neq 0$,



      so the series diverges.




      1. Investigate convergence of $sum frac{1}{(ln n)^{ln n}}$.


      Convergence of $frac{1}{(ln n)^{ln n}} iff $ convergence of $frac{2^n}{(n ln 2)^{n ln 2}}$.



      Applying Cauchy's test,



      $limbigg( frac{2^n}{(n ln 2)^{n ln 2}} bigg)^{1/n}=limfrac{2}{(n ln 2)^{ ln 2}}=0<1$, so the series converges.



      My intuition tells me that in terms of limits and convergence, $frac{2^n}{(n ln 2)^{n ln 2}}$ must be in some sense equivalent to the $frac{2^n}{n^{n}}$, which is converging big time (ratio test to see). I will be very grateful if someone could tell me how to formalize the idea, or if it is even correct at all.




      1. Investigate convergence of $sum frac{2cdot 5 cdot cdots cdot (3n-4)}{3^n cdot n!}$.


      Let's use Raabe's test.



      $lim n bigg( frac{2cdot 5 cdot cdots cdot (3n-4)}{3^n cdot n!} cdot frac{3^n cdot n! cdot 3 cdot (n+1)}{2cdot 5 cdot cdots cdot (3n-4) cdot (3(n+1)-4)} - 1 bigg)$



      $lim n bigg( frac{1}{1} cdot frac{ 3 cdot (n+1)}{3(n+1)-4} - 1 bigg)$



      $lim n bigg( frac{3n+3-3n+1}{3n-1} bigg)$



      $lim bigg( frac{4n}{3n-1} bigg)$



      $frac{4}{3} > 1,$



      so the series converges.





      1. $sum a_n$ is absolutely converging (i.e. $sum |a_n|$ converges), and $sum b_n$ is diverging. Does $sum a_n+b_n$ converge?


      I am having a hard time with this one.



      We know from the lectures that if $sum a_n$ is absolutely converging, then $sum a_n$ is converging.



      From the definition, $forall epsilon>0 exists N_a : forall n, m>N_a Longrightarrow |a_n+cdots+a_m|<epsilon.$



      Now, I'm not sure if I have written the negation correctly:



      $exists epsilon>0 forall N_b exists n, m>N_b Longrightarrow |b_n+cdots+b_m|geepsilon.$



      Taking the difference of one from another, I can get the desired (?)



      $|a_n+cdots+a_m|-epsilon<epsilon-|b_n+cdots+b_m|$



      $|a_n+cdots+a_m|+|b_n+cdots+b_m|<2epsilon,$



      now, from the triangle inequality,



      $|a_n+cdots+a_m+b_n+cdots+b_m|<2epsilon.$



      (The series is diverging).



      I feel like neglecting the quantors can land me in trouble.




      1. With what range of values of $alpha>0$ does $sum frac{3^n}{(2n)!n^{alpha}}$ converge?


      If we prove that with $alpha=0$ the series converges, then we have shown it converges for all the positive alphas. Ratio test tells us



      $frac{3^ncdot 3}{(2n)! cdot (2n+1) cdot (2n+2)}cdot frac{(2n)!}{3^n}$



      $frac{3}{(2n+1) cdot (2n+2)} longrightarrow 0<1,$



      so the series converges.



      Thank you very much. Alternative proofs are welcome.










      share|cite|improve this question









      $endgroup$





      1. Investigate convergence of $sum_{n=2}^{infty} frac{1}{n^{ln n}}$.


      $frac{1}{n^{ln n}}<frac{1}{n^2}, sum frac{1}{n^2}=pi/6$, so the original series converges.
      (To verify the convergence of $sumfrac{1}{n^2}$, we can first apply the telescopic equivalence, and then use the ratio test).




      1. Investigate convergence of $sum frac{2^ncdot (n!)^2}{4cdot 11 cdot cdots cdot (2n^2+n+1)}$.


      Let's use Raabe's test.



      $n bigg( frac{2^ncdot (n!)^2}{4cdot 11 cdot cdots cdot (2n^2+n+1)}cdot frac{4cdot 11 cdot cdots cdot (2n^2+n+1) cdot (2(n+1)^2+(n+1)+1)}{2^ncdot (n!)^2cdot 2 cdot (n+1)^2} -1 bigg)= n bigg( frac{1}{1}cdot frac{ 2(n+1)^2+(n+1)+1}{2 cdot (n+1)^2} -1 bigg) = n bigg( frac{1}{1}cdot frac{ 2(n+1)^2+(n+1)+1 - 2 cdot (n+1)^2}{2 cdot (n+1)^2} bigg) = n bigg( frac{ (n+1)+1}{2 cdot (n+1)^2} bigg) = frac{n^2 + o(n^2)}{2n^2 + o(n^2)}longrightarrow frac{1}{2}<1,$



      so the series diverges.




      1. Investigate convergence of $sum (1+frac{2n^2+n}{3n^3-nsin n})^{frac{n^2 + n cos n}{n+sin n}}$.


      We know that, for a series to converge, it's necessary for its $a_n$ to tend to zero.



      $(1+frac{2n^2+n}{3n^3-nsin n})^{frac{n^2 + n cos n}{n+sin n}}$



      The fraction inside tends to zero (dividing the nominator and the denominator by $n^2$), so we look for the exponent:



      $(1+frac{2n^2+n}{3n^3-nsin n})^{frac{n^2 + n cos n}{n+sin n} cdot frac{2n^2+n}{3n^3-nsin n} cdot frac{3n^3-nsin n}{2n^2+n} }$



      $e^{{frac{n^2 + n cos n}{n+sin n} cdot frac{2n^2+n}{3n^3-nsin n}}}$



      $e^{frac{2n^4 + o(n^4)}{3n^4+o(n^4)}}$



      $e^{frac{2}{3}} neq 0$,



      so the series diverges.




      1. Investigate convergence of $sum frac{1}{(ln n)^{ln n}}$.


      Convergence of $frac{1}{(ln n)^{ln n}} iff $ convergence of $frac{2^n}{(n ln 2)^{n ln 2}}$.



      Applying Cauchy's test,



      $limbigg( frac{2^n}{(n ln 2)^{n ln 2}} bigg)^{1/n}=limfrac{2}{(n ln 2)^{ ln 2}}=0<1$, so the series converges.



      My intuition tells me that in terms of limits and convergence, $frac{2^n}{(n ln 2)^{n ln 2}}$ must be in some sense equivalent to the $frac{2^n}{n^{n}}$, which is converging big time (ratio test to see). I will be very grateful if someone could tell me how to formalize the idea, or if it is even correct at all.




      1. Investigate convergence of $sum frac{2cdot 5 cdot cdots cdot (3n-4)}{3^n cdot n!}$.


      Let's use Raabe's test.



      $lim n bigg( frac{2cdot 5 cdot cdots cdot (3n-4)}{3^n cdot n!} cdot frac{3^n cdot n! cdot 3 cdot (n+1)}{2cdot 5 cdot cdots cdot (3n-4) cdot (3(n+1)-4)} - 1 bigg)$



      $lim n bigg( frac{1}{1} cdot frac{ 3 cdot (n+1)}{3(n+1)-4} - 1 bigg)$



      $lim n bigg( frac{3n+3-3n+1}{3n-1} bigg)$



      $lim bigg( frac{4n}{3n-1} bigg)$



      $frac{4}{3} > 1,$



      so the series converges.





      1. $sum a_n$ is absolutely converging (i.e. $sum |a_n|$ converges), and $sum b_n$ is diverging. Does $sum a_n+b_n$ converge?


      I am having a hard time with this one.



      We know from the lectures that if $sum a_n$ is absolutely converging, then $sum a_n$ is converging.



      From the definition, $forall epsilon>0 exists N_a : forall n, m>N_a Longrightarrow |a_n+cdots+a_m|<epsilon.$



      Now, I'm not sure if I have written the negation correctly:



      $exists epsilon>0 forall N_b exists n, m>N_b Longrightarrow |b_n+cdots+b_m|geepsilon.$



      Taking the difference of one from another, I can get the desired (?)



      $|a_n+cdots+a_m|-epsilon<epsilon-|b_n+cdots+b_m|$



      $|a_n+cdots+a_m|+|b_n+cdots+b_m|<2epsilon,$



      now, from the triangle inequality,



      $|a_n+cdots+a_m+b_n+cdots+b_m|<2epsilon.$



      (The series is diverging).



      I feel like neglecting the quantors can land me in trouble.




      1. With what range of values of $alpha>0$ does $sum frac{3^n}{(2n)!n^{alpha}}$ converge?


      If we prove that with $alpha=0$ the series converges, then we have shown it converges for all the positive alphas. Ratio test tells us



      $frac{3^ncdot 3}{(2n)! cdot (2n+1) cdot (2n+2)}cdot frac{(2n)!}{3^n}$



      $frac{3}{(2n+1) cdot (2n+2)} longrightarrow 0<1,$



      so the series converges.



      Thank you very much. Alternative proofs are welcome.







      sequences-and-series proof-verification






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 3 '18 at 9:53









      fragileradiusfragileradius

      297114




      297114






















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3023851%2f7-elementary-exercises-about-series-convergence-are-my-solutions-correct%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3023851%2f7-elementary-exercises-about-series-convergence-are-my-solutions-correct%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Biblatex bibliography style without URLs when DOI exists (in Overleaf with Zotero bibliography)

          How to change which sound is reproduced for terminal bell?

          Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents