Abscissa of absolute convergence for a particular Dirichlet series
$begingroup$
For $n=p_1^{alpha_1}p_2^{alpha_2}cdotcdotcdot p_k^{alpha_k}$ we
denote $alpha(n)=alpha_1alpha_2cdotcdotcdotalpha_k$. Show that
$F(s)=sum_{ngeq 1}frac{alpha(n)}{n^s}$ is absolutely convergent
for $sigma>1$.
My attempt:
Notice that $alpha(n)leq n$ because
begin{equation*}
alpha_ileq p_i^{alpha_i},;text{ for every $p_i$ prime}\
alpha(n)=alpha_1cdotcdotcdotalpha_kleq p_1^{alpha_1}cdotcdotcdot p_k^{alpha_k}=n
end{equation*}
Thus, $$sum_{ngeq 1}frac{alpha(n)}{n^s}leq sum_{ngeq 1}frac{n}{n^s}=sum_{ngeq 1}frac{1}{n^{s-1}}=zeta(s-1)$$
that is absolutely convergent for $sigma>2$.
But I don't find the way to ensure convergence for $sigma>1$.
Thanks for any suggestion.
number-theory analytic-number-theory dirichlet-series
$endgroup$
add a comment |
$begingroup$
For $n=p_1^{alpha_1}p_2^{alpha_2}cdotcdotcdot p_k^{alpha_k}$ we
denote $alpha(n)=alpha_1alpha_2cdotcdotcdotalpha_k$. Show that
$F(s)=sum_{ngeq 1}frac{alpha(n)}{n^s}$ is absolutely convergent
for $sigma>1$.
My attempt:
Notice that $alpha(n)leq n$ because
begin{equation*}
alpha_ileq p_i^{alpha_i},;text{ for every $p_i$ prime}\
alpha(n)=alpha_1cdotcdotcdotalpha_kleq p_1^{alpha_1}cdotcdotcdot p_k^{alpha_k}=n
end{equation*}
Thus, $$sum_{ngeq 1}frac{alpha(n)}{n^s}leq sum_{ngeq 1}frac{n}{n^s}=sum_{ngeq 1}frac{1}{n^{s-1}}=zeta(s-1)$$
that is absolutely convergent for $sigma>2$.
But I don't find the way to ensure convergence for $sigma>1$.
Thanks for any suggestion.
number-theory analytic-number-theory dirichlet-series
$endgroup$
$begingroup$
$F(s) = prod_p (1+sum_{k=1}^infty k p^{-sk}) $, $frac{F(s)}{zeta(s)} = prod_p( 1+sum_{k=2}^infty p^{-sk})$ which converges for $Re(s) > 1/2$.
$endgroup$
– reuns
Nov 25 '18 at 21:51
$begingroup$
Doesn't that first equality hold only if the series converge absolutely?
$endgroup$
– Kale36
Nov 26 '18 at 1:14
$begingroup$
@reuns How did you get the expresion for $frac{F(s)}{zeta(s)}$?
$endgroup$
– Kale36
Nov 26 '18 at 17:40
$begingroup$
$F(s) =sum_{ngeq 1}frac{alpha(n)}{n^s}= prod_p (1+sum_{k=1}^infty k p^{-sk})$ converges for $Re(s) > 1$ and $frac{F(s)}{zeta(s)}=prod_p (1+sum_{k=1}^infty k p^{-sk})(1-p^{-s})= prod_p( 1+sum_{k=2}^infty p^{-sk})$ converges for $Re(s) > 1/2$
$endgroup$
– reuns
Nov 26 '18 at 18:10
add a comment |
$begingroup$
For $n=p_1^{alpha_1}p_2^{alpha_2}cdotcdotcdot p_k^{alpha_k}$ we
denote $alpha(n)=alpha_1alpha_2cdotcdotcdotalpha_k$. Show that
$F(s)=sum_{ngeq 1}frac{alpha(n)}{n^s}$ is absolutely convergent
for $sigma>1$.
My attempt:
Notice that $alpha(n)leq n$ because
begin{equation*}
alpha_ileq p_i^{alpha_i},;text{ for every $p_i$ prime}\
alpha(n)=alpha_1cdotcdotcdotalpha_kleq p_1^{alpha_1}cdotcdotcdot p_k^{alpha_k}=n
end{equation*}
Thus, $$sum_{ngeq 1}frac{alpha(n)}{n^s}leq sum_{ngeq 1}frac{n}{n^s}=sum_{ngeq 1}frac{1}{n^{s-1}}=zeta(s-1)$$
that is absolutely convergent for $sigma>2$.
But I don't find the way to ensure convergence for $sigma>1$.
Thanks for any suggestion.
number-theory analytic-number-theory dirichlet-series
$endgroup$
For $n=p_1^{alpha_1}p_2^{alpha_2}cdotcdotcdot p_k^{alpha_k}$ we
denote $alpha(n)=alpha_1alpha_2cdotcdotcdotalpha_k$. Show that
$F(s)=sum_{ngeq 1}frac{alpha(n)}{n^s}$ is absolutely convergent
for $sigma>1$.
My attempt:
Notice that $alpha(n)leq n$ because
begin{equation*}
alpha_ileq p_i^{alpha_i},;text{ for every $p_i$ prime}\
alpha(n)=alpha_1cdotcdotcdotalpha_kleq p_1^{alpha_1}cdotcdotcdot p_k^{alpha_k}=n
end{equation*}
Thus, $$sum_{ngeq 1}frac{alpha(n)}{n^s}leq sum_{ngeq 1}frac{n}{n^s}=sum_{ngeq 1}frac{1}{n^{s-1}}=zeta(s-1)$$
that is absolutely convergent for $sigma>2$.
But I don't find the way to ensure convergence for $sigma>1$.
Thanks for any suggestion.
number-theory analytic-number-theory dirichlet-series
number-theory analytic-number-theory dirichlet-series
edited Nov 25 '18 at 18:20
Bernard
119k740113
119k740113
asked Nov 25 '18 at 18:06
Kale36Kale36
454
454
$begingroup$
$F(s) = prod_p (1+sum_{k=1}^infty k p^{-sk}) $, $frac{F(s)}{zeta(s)} = prod_p( 1+sum_{k=2}^infty p^{-sk})$ which converges for $Re(s) > 1/2$.
$endgroup$
– reuns
Nov 25 '18 at 21:51
$begingroup$
Doesn't that first equality hold only if the series converge absolutely?
$endgroup$
– Kale36
Nov 26 '18 at 1:14
$begingroup$
@reuns How did you get the expresion for $frac{F(s)}{zeta(s)}$?
$endgroup$
– Kale36
Nov 26 '18 at 17:40
$begingroup$
$F(s) =sum_{ngeq 1}frac{alpha(n)}{n^s}= prod_p (1+sum_{k=1}^infty k p^{-sk})$ converges for $Re(s) > 1$ and $frac{F(s)}{zeta(s)}=prod_p (1+sum_{k=1}^infty k p^{-sk})(1-p^{-s})= prod_p( 1+sum_{k=2}^infty p^{-sk})$ converges for $Re(s) > 1/2$
$endgroup$
– reuns
Nov 26 '18 at 18:10
add a comment |
$begingroup$
$F(s) = prod_p (1+sum_{k=1}^infty k p^{-sk}) $, $frac{F(s)}{zeta(s)} = prod_p( 1+sum_{k=2}^infty p^{-sk})$ which converges for $Re(s) > 1/2$.
$endgroup$
– reuns
Nov 25 '18 at 21:51
$begingroup$
Doesn't that first equality hold only if the series converge absolutely?
$endgroup$
– Kale36
Nov 26 '18 at 1:14
$begingroup$
@reuns How did you get the expresion for $frac{F(s)}{zeta(s)}$?
$endgroup$
– Kale36
Nov 26 '18 at 17:40
$begingroup$
$F(s) =sum_{ngeq 1}frac{alpha(n)}{n^s}= prod_p (1+sum_{k=1}^infty k p^{-sk})$ converges for $Re(s) > 1$ and $frac{F(s)}{zeta(s)}=prod_p (1+sum_{k=1}^infty k p^{-sk})(1-p^{-s})= prod_p( 1+sum_{k=2}^infty p^{-sk})$ converges for $Re(s) > 1/2$
$endgroup$
– reuns
Nov 26 '18 at 18:10
$begingroup$
$F(s) = prod_p (1+sum_{k=1}^infty k p^{-sk}) $, $frac{F(s)}{zeta(s)} = prod_p( 1+sum_{k=2}^infty p^{-sk})$ which converges for $Re(s) > 1/2$.
$endgroup$
– reuns
Nov 25 '18 at 21:51
$begingroup$
$F(s) = prod_p (1+sum_{k=1}^infty k p^{-sk}) $, $frac{F(s)}{zeta(s)} = prod_p( 1+sum_{k=2}^infty p^{-sk})$ which converges for $Re(s) > 1/2$.
$endgroup$
– reuns
Nov 25 '18 at 21:51
$begingroup$
Doesn't that first equality hold only if the series converge absolutely?
$endgroup$
– Kale36
Nov 26 '18 at 1:14
$begingroup$
Doesn't that first equality hold only if the series converge absolutely?
$endgroup$
– Kale36
Nov 26 '18 at 1:14
$begingroup$
@reuns How did you get the expresion for $frac{F(s)}{zeta(s)}$?
$endgroup$
– Kale36
Nov 26 '18 at 17:40
$begingroup$
@reuns How did you get the expresion for $frac{F(s)}{zeta(s)}$?
$endgroup$
– Kale36
Nov 26 '18 at 17:40
$begingroup$
$F(s) =sum_{ngeq 1}frac{alpha(n)}{n^s}= prod_p (1+sum_{k=1}^infty k p^{-sk})$ converges for $Re(s) > 1$ and $frac{F(s)}{zeta(s)}=prod_p (1+sum_{k=1}^infty k p^{-sk})(1-p^{-s})= prod_p( 1+sum_{k=2}^infty p^{-sk})$ converges for $Re(s) > 1/2$
$endgroup$
– reuns
Nov 26 '18 at 18:10
$begingroup$
$F(s) =sum_{ngeq 1}frac{alpha(n)}{n^s}= prod_p (1+sum_{k=1}^infty k p^{-sk})$ converges for $Re(s) > 1$ and $frac{F(s)}{zeta(s)}=prod_p (1+sum_{k=1}^infty k p^{-sk})(1-p^{-s})= prod_p( 1+sum_{k=2}^infty p^{-sk})$ converges for $Re(s) > 1/2$
$endgroup$
– reuns
Nov 26 '18 at 18:10
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3013171%2fabscissa-of-absolute-convergence-for-a-particular-dirichlet-series%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3013171%2fabscissa-of-absolute-convergence-for-a-particular-dirichlet-series%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
$F(s) = prod_p (1+sum_{k=1}^infty k p^{-sk}) $, $frac{F(s)}{zeta(s)} = prod_p( 1+sum_{k=2}^infty p^{-sk})$ which converges for $Re(s) > 1/2$.
$endgroup$
– reuns
Nov 25 '18 at 21:51
$begingroup$
Doesn't that first equality hold only if the series converge absolutely?
$endgroup$
– Kale36
Nov 26 '18 at 1:14
$begingroup$
@reuns How did you get the expresion for $frac{F(s)}{zeta(s)}$?
$endgroup$
– Kale36
Nov 26 '18 at 17:40
$begingroup$
$F(s) =sum_{ngeq 1}frac{alpha(n)}{n^s}= prod_p (1+sum_{k=1}^infty k p^{-sk})$ converges for $Re(s) > 1$ and $frac{F(s)}{zeta(s)}=prod_p (1+sum_{k=1}^infty k p^{-sk})(1-p^{-s})= prod_p( 1+sum_{k=2}^infty p^{-sk})$ converges for $Re(s) > 1/2$
$endgroup$
– reuns
Nov 26 '18 at 18:10