Abscissa of absolute convergence for a particular Dirichlet series












0












$begingroup$



For $n=p_1^{alpha_1}p_2^{alpha_2}cdotcdotcdot p_k^{alpha_k}$ we
denote $alpha(n)=alpha_1alpha_2cdotcdotcdotalpha_k$. Show that
$F(s)=sum_{ngeq 1}frac{alpha(n)}{n^s}$ is absolutely convergent
for $sigma>1$.




My attempt:



Notice that $alpha(n)leq n$ because
begin{equation*}
alpha_ileq p_i^{alpha_i},;text{ for every $p_i$ prime}\
alpha(n)=alpha_1cdotcdotcdotalpha_kleq p_1^{alpha_1}cdotcdotcdot p_k^{alpha_k}=n
end{equation*}

Thus, $$sum_{ngeq 1}frac{alpha(n)}{n^s}leq sum_{ngeq 1}frac{n}{n^s}=sum_{ngeq 1}frac{1}{n^{s-1}}=zeta(s-1)$$
that is absolutely convergent for $sigma>2$.



But I don't find the way to ensure convergence for $sigma>1$.



Thanks for any suggestion.










share|cite|improve this question











$endgroup$












  • $begingroup$
    $F(s) = prod_p (1+sum_{k=1}^infty k p^{-sk}) $, $frac{F(s)}{zeta(s)} = prod_p( 1+sum_{k=2}^infty p^{-sk})$ which converges for $Re(s) > 1/2$.
    $endgroup$
    – reuns
    Nov 25 '18 at 21:51












  • $begingroup$
    Doesn't that first equality hold only if the series converge absolutely?
    $endgroup$
    – Kale36
    Nov 26 '18 at 1:14










  • $begingroup$
    @reuns How did you get the expresion for $frac{F(s)}{zeta(s)}$?
    $endgroup$
    – Kale36
    Nov 26 '18 at 17:40










  • $begingroup$
    $F(s) =sum_{ngeq 1}frac{alpha(n)}{n^s}= prod_p (1+sum_{k=1}^infty k p^{-sk})$ converges for $Re(s) > 1$ and $frac{F(s)}{zeta(s)}=prod_p (1+sum_{k=1}^infty k p^{-sk})(1-p^{-s})= prod_p( 1+sum_{k=2}^infty p^{-sk})$ converges for $Re(s) > 1/2$
    $endgroup$
    – reuns
    Nov 26 '18 at 18:10


















0












$begingroup$



For $n=p_1^{alpha_1}p_2^{alpha_2}cdotcdotcdot p_k^{alpha_k}$ we
denote $alpha(n)=alpha_1alpha_2cdotcdotcdotalpha_k$. Show that
$F(s)=sum_{ngeq 1}frac{alpha(n)}{n^s}$ is absolutely convergent
for $sigma>1$.




My attempt:



Notice that $alpha(n)leq n$ because
begin{equation*}
alpha_ileq p_i^{alpha_i},;text{ for every $p_i$ prime}\
alpha(n)=alpha_1cdotcdotcdotalpha_kleq p_1^{alpha_1}cdotcdotcdot p_k^{alpha_k}=n
end{equation*}

Thus, $$sum_{ngeq 1}frac{alpha(n)}{n^s}leq sum_{ngeq 1}frac{n}{n^s}=sum_{ngeq 1}frac{1}{n^{s-1}}=zeta(s-1)$$
that is absolutely convergent for $sigma>2$.



But I don't find the way to ensure convergence for $sigma>1$.



Thanks for any suggestion.










share|cite|improve this question











$endgroup$












  • $begingroup$
    $F(s) = prod_p (1+sum_{k=1}^infty k p^{-sk}) $, $frac{F(s)}{zeta(s)} = prod_p( 1+sum_{k=2}^infty p^{-sk})$ which converges for $Re(s) > 1/2$.
    $endgroup$
    – reuns
    Nov 25 '18 at 21:51












  • $begingroup$
    Doesn't that first equality hold only if the series converge absolutely?
    $endgroup$
    – Kale36
    Nov 26 '18 at 1:14










  • $begingroup$
    @reuns How did you get the expresion for $frac{F(s)}{zeta(s)}$?
    $endgroup$
    – Kale36
    Nov 26 '18 at 17:40










  • $begingroup$
    $F(s) =sum_{ngeq 1}frac{alpha(n)}{n^s}= prod_p (1+sum_{k=1}^infty k p^{-sk})$ converges for $Re(s) > 1$ and $frac{F(s)}{zeta(s)}=prod_p (1+sum_{k=1}^infty k p^{-sk})(1-p^{-s})= prod_p( 1+sum_{k=2}^infty p^{-sk})$ converges for $Re(s) > 1/2$
    $endgroup$
    – reuns
    Nov 26 '18 at 18:10
















0












0








0





$begingroup$



For $n=p_1^{alpha_1}p_2^{alpha_2}cdotcdotcdot p_k^{alpha_k}$ we
denote $alpha(n)=alpha_1alpha_2cdotcdotcdotalpha_k$. Show that
$F(s)=sum_{ngeq 1}frac{alpha(n)}{n^s}$ is absolutely convergent
for $sigma>1$.




My attempt:



Notice that $alpha(n)leq n$ because
begin{equation*}
alpha_ileq p_i^{alpha_i},;text{ for every $p_i$ prime}\
alpha(n)=alpha_1cdotcdotcdotalpha_kleq p_1^{alpha_1}cdotcdotcdot p_k^{alpha_k}=n
end{equation*}

Thus, $$sum_{ngeq 1}frac{alpha(n)}{n^s}leq sum_{ngeq 1}frac{n}{n^s}=sum_{ngeq 1}frac{1}{n^{s-1}}=zeta(s-1)$$
that is absolutely convergent for $sigma>2$.



But I don't find the way to ensure convergence for $sigma>1$.



Thanks for any suggestion.










share|cite|improve this question











$endgroup$





For $n=p_1^{alpha_1}p_2^{alpha_2}cdotcdotcdot p_k^{alpha_k}$ we
denote $alpha(n)=alpha_1alpha_2cdotcdotcdotalpha_k$. Show that
$F(s)=sum_{ngeq 1}frac{alpha(n)}{n^s}$ is absolutely convergent
for $sigma>1$.




My attempt:



Notice that $alpha(n)leq n$ because
begin{equation*}
alpha_ileq p_i^{alpha_i},;text{ for every $p_i$ prime}\
alpha(n)=alpha_1cdotcdotcdotalpha_kleq p_1^{alpha_1}cdotcdotcdot p_k^{alpha_k}=n
end{equation*}

Thus, $$sum_{ngeq 1}frac{alpha(n)}{n^s}leq sum_{ngeq 1}frac{n}{n^s}=sum_{ngeq 1}frac{1}{n^{s-1}}=zeta(s-1)$$
that is absolutely convergent for $sigma>2$.



But I don't find the way to ensure convergence for $sigma>1$.



Thanks for any suggestion.







number-theory analytic-number-theory dirichlet-series






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 25 '18 at 18:20









Bernard

119k740113




119k740113










asked Nov 25 '18 at 18:06









Kale36Kale36

454




454












  • $begingroup$
    $F(s) = prod_p (1+sum_{k=1}^infty k p^{-sk}) $, $frac{F(s)}{zeta(s)} = prod_p( 1+sum_{k=2}^infty p^{-sk})$ which converges for $Re(s) > 1/2$.
    $endgroup$
    – reuns
    Nov 25 '18 at 21:51












  • $begingroup$
    Doesn't that first equality hold only if the series converge absolutely?
    $endgroup$
    – Kale36
    Nov 26 '18 at 1:14










  • $begingroup$
    @reuns How did you get the expresion for $frac{F(s)}{zeta(s)}$?
    $endgroup$
    – Kale36
    Nov 26 '18 at 17:40










  • $begingroup$
    $F(s) =sum_{ngeq 1}frac{alpha(n)}{n^s}= prod_p (1+sum_{k=1}^infty k p^{-sk})$ converges for $Re(s) > 1$ and $frac{F(s)}{zeta(s)}=prod_p (1+sum_{k=1}^infty k p^{-sk})(1-p^{-s})= prod_p( 1+sum_{k=2}^infty p^{-sk})$ converges for $Re(s) > 1/2$
    $endgroup$
    – reuns
    Nov 26 '18 at 18:10




















  • $begingroup$
    $F(s) = prod_p (1+sum_{k=1}^infty k p^{-sk}) $, $frac{F(s)}{zeta(s)} = prod_p( 1+sum_{k=2}^infty p^{-sk})$ which converges for $Re(s) > 1/2$.
    $endgroup$
    – reuns
    Nov 25 '18 at 21:51












  • $begingroup$
    Doesn't that first equality hold only if the series converge absolutely?
    $endgroup$
    – Kale36
    Nov 26 '18 at 1:14










  • $begingroup$
    @reuns How did you get the expresion for $frac{F(s)}{zeta(s)}$?
    $endgroup$
    – Kale36
    Nov 26 '18 at 17:40










  • $begingroup$
    $F(s) =sum_{ngeq 1}frac{alpha(n)}{n^s}= prod_p (1+sum_{k=1}^infty k p^{-sk})$ converges for $Re(s) > 1$ and $frac{F(s)}{zeta(s)}=prod_p (1+sum_{k=1}^infty k p^{-sk})(1-p^{-s})= prod_p( 1+sum_{k=2}^infty p^{-sk})$ converges for $Re(s) > 1/2$
    $endgroup$
    – reuns
    Nov 26 '18 at 18:10


















$begingroup$
$F(s) = prod_p (1+sum_{k=1}^infty k p^{-sk}) $, $frac{F(s)}{zeta(s)} = prod_p( 1+sum_{k=2}^infty p^{-sk})$ which converges for $Re(s) > 1/2$.
$endgroup$
– reuns
Nov 25 '18 at 21:51






$begingroup$
$F(s) = prod_p (1+sum_{k=1}^infty k p^{-sk}) $, $frac{F(s)}{zeta(s)} = prod_p( 1+sum_{k=2}^infty p^{-sk})$ which converges for $Re(s) > 1/2$.
$endgroup$
– reuns
Nov 25 '18 at 21:51














$begingroup$
Doesn't that first equality hold only if the series converge absolutely?
$endgroup$
– Kale36
Nov 26 '18 at 1:14




$begingroup$
Doesn't that first equality hold only if the series converge absolutely?
$endgroup$
– Kale36
Nov 26 '18 at 1:14












$begingroup$
@reuns How did you get the expresion for $frac{F(s)}{zeta(s)}$?
$endgroup$
– Kale36
Nov 26 '18 at 17:40




$begingroup$
@reuns How did you get the expresion for $frac{F(s)}{zeta(s)}$?
$endgroup$
– Kale36
Nov 26 '18 at 17:40












$begingroup$
$F(s) =sum_{ngeq 1}frac{alpha(n)}{n^s}= prod_p (1+sum_{k=1}^infty k p^{-sk})$ converges for $Re(s) > 1$ and $frac{F(s)}{zeta(s)}=prod_p (1+sum_{k=1}^infty k p^{-sk})(1-p^{-s})= prod_p( 1+sum_{k=2}^infty p^{-sk})$ converges for $Re(s) > 1/2$
$endgroup$
– reuns
Nov 26 '18 at 18:10






$begingroup$
$F(s) =sum_{ngeq 1}frac{alpha(n)}{n^s}= prod_p (1+sum_{k=1}^infty k p^{-sk})$ converges for $Re(s) > 1$ and $frac{F(s)}{zeta(s)}=prod_p (1+sum_{k=1}^infty k p^{-sk})(1-p^{-s})= prod_p( 1+sum_{k=2}^infty p^{-sk})$ converges for $Re(s) > 1/2$
$endgroup$
– reuns
Nov 26 '18 at 18:10












0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3013171%2fabscissa-of-absolute-convergence-for-a-particular-dirichlet-series%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3013171%2fabscissa-of-absolute-convergence-for-a-particular-dirichlet-series%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

How to change which sound is reproduced for terminal bell?

Can I use Tabulator js library in my java Spring + Thymeleaf project?

Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents