What happens to the group structure of an elliptic curve over a field when the discriminant = 0?











up vote
2
down vote

favorite












Working on a question for a number theory class.



So, basically, it asks us what happens to the group structure of an elliptic curve over a field if the discriminant is equal to zero?



So, basically, what I've got is that either is crosses itself, or it ends up having a cusp. In either case, it does not have a well defined derivative at some point. Since lambda depends on a well defined derivative, if an elliptic curve has a singular point at (a, b), then elliptic curve addition would not be well defined for (a, b) + (a, b).



Is this right? Am I missing something else that happens to group structure?



EDIT: I guess, also, when they are this shape, we couldn't guarantee that a tangent line that intersected the line in two places intersected it in a third place. So, then, the operations aren't necessarily well defined anywhere? Is that more right?










share|cite|improve this question
























  • Do you mean discriminant?
    – Randall
    Nov 14 at 4:04










  • Yes. Sorry. Super tired. Haha. Edited the post.
    – Chris N-L
    Nov 14 at 4:10

















up vote
2
down vote

favorite












Working on a question for a number theory class.



So, basically, it asks us what happens to the group structure of an elliptic curve over a field if the discriminant is equal to zero?



So, basically, what I've got is that either is crosses itself, or it ends up having a cusp. In either case, it does not have a well defined derivative at some point. Since lambda depends on a well defined derivative, if an elliptic curve has a singular point at (a, b), then elliptic curve addition would not be well defined for (a, b) + (a, b).



Is this right? Am I missing something else that happens to group structure?



EDIT: I guess, also, when they are this shape, we couldn't guarantee that a tangent line that intersected the line in two places intersected it in a third place. So, then, the operations aren't necessarily well defined anywhere? Is that more right?










share|cite|improve this question
























  • Do you mean discriminant?
    – Randall
    Nov 14 at 4:04










  • Yes. Sorry. Super tired. Haha. Edited the post.
    – Chris N-L
    Nov 14 at 4:10















up vote
2
down vote

favorite









up vote
2
down vote

favorite











Working on a question for a number theory class.



So, basically, it asks us what happens to the group structure of an elliptic curve over a field if the discriminant is equal to zero?



So, basically, what I've got is that either is crosses itself, or it ends up having a cusp. In either case, it does not have a well defined derivative at some point. Since lambda depends on a well defined derivative, if an elliptic curve has a singular point at (a, b), then elliptic curve addition would not be well defined for (a, b) + (a, b).



Is this right? Am I missing something else that happens to group structure?



EDIT: I guess, also, when they are this shape, we couldn't guarantee that a tangent line that intersected the line in two places intersected it in a third place. So, then, the operations aren't necessarily well defined anywhere? Is that more right?










share|cite|improve this question















Working on a question for a number theory class.



So, basically, it asks us what happens to the group structure of an elliptic curve over a field if the discriminant is equal to zero?



So, basically, what I've got is that either is crosses itself, or it ends up having a cusp. In either case, it does not have a well defined derivative at some point. Since lambda depends on a well defined derivative, if an elliptic curve has a singular point at (a, b), then elliptic curve addition would not be well defined for (a, b) + (a, b).



Is this right? Am I missing something else that happens to group structure?



EDIT: I guess, also, when they are this shape, we couldn't guarantee that a tangent line that intersected the line in two places intersected it in a third place. So, then, the operations aren't necessarily well defined anywhere? Is that more right?







group-theory elliptic-curves discriminant






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 14 at 4:44

























asked Nov 14 at 4:01









Chris N-L

112




112












  • Do you mean discriminant?
    – Randall
    Nov 14 at 4:04










  • Yes. Sorry. Super tired. Haha. Edited the post.
    – Chris N-L
    Nov 14 at 4:10




















  • Do you mean discriminant?
    – Randall
    Nov 14 at 4:04










  • Yes. Sorry. Super tired. Haha. Edited the post.
    – Chris N-L
    Nov 14 at 4:10


















Do you mean discriminant?
– Randall
Nov 14 at 4:04




Do you mean discriminant?
– Randall
Nov 14 at 4:04












Yes. Sorry. Super tired. Haha. Edited the post.
– Chris N-L
Nov 14 at 4:10






Yes. Sorry. Super tired. Haha. Edited the post.
– Chris N-L
Nov 14 at 4:10












1 Answer
1






active

oldest

votes

















up vote
0
down vote













If the discriminant is zero, it's not an elliptic curve. Anyway,
consider an singular irreducible plane cubic curve $C$ over an algebraically
closed field.



A singular irreducible cubic has one singular point. The
non-singular points on the curve do have a group structure though. When $C$
has a node, the group of non-singular points is isomorphic to
the multiplicative group
$K^*$ and when $C$ has a cusp, the group is isomorphic to the additive
group of $K$.



You can find details in texts such as Silverman's.






share|cite|improve this answer





















    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














     

    draft saved


    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2997763%2fwhat-happens-to-the-group-structure-of-an-elliptic-curve-over-a-field-when-the-d%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    0
    down vote













    If the discriminant is zero, it's not an elliptic curve. Anyway,
    consider an singular irreducible plane cubic curve $C$ over an algebraically
    closed field.



    A singular irreducible cubic has one singular point. The
    non-singular points on the curve do have a group structure though. When $C$
    has a node, the group of non-singular points is isomorphic to
    the multiplicative group
    $K^*$ and when $C$ has a cusp, the group is isomorphic to the additive
    group of $K$.



    You can find details in texts such as Silverman's.






    share|cite|improve this answer

























      up vote
      0
      down vote













      If the discriminant is zero, it's not an elliptic curve. Anyway,
      consider an singular irreducible plane cubic curve $C$ over an algebraically
      closed field.



      A singular irreducible cubic has one singular point. The
      non-singular points on the curve do have a group structure though. When $C$
      has a node, the group of non-singular points is isomorphic to
      the multiplicative group
      $K^*$ and when $C$ has a cusp, the group is isomorphic to the additive
      group of $K$.



      You can find details in texts such as Silverman's.






      share|cite|improve this answer























        up vote
        0
        down vote










        up vote
        0
        down vote









        If the discriminant is zero, it's not an elliptic curve. Anyway,
        consider an singular irreducible plane cubic curve $C$ over an algebraically
        closed field.



        A singular irreducible cubic has one singular point. The
        non-singular points on the curve do have a group structure though. When $C$
        has a node, the group of non-singular points is isomorphic to
        the multiplicative group
        $K^*$ and when $C$ has a cusp, the group is isomorphic to the additive
        group of $K$.



        You can find details in texts such as Silverman's.






        share|cite|improve this answer












        If the discriminant is zero, it's not an elliptic curve. Anyway,
        consider an singular irreducible plane cubic curve $C$ over an algebraically
        closed field.



        A singular irreducible cubic has one singular point. The
        non-singular points on the curve do have a group structure though. When $C$
        has a node, the group of non-singular points is isomorphic to
        the multiplicative group
        $K^*$ and when $C$ has a cusp, the group is isomorphic to the additive
        group of $K$.



        You can find details in texts such as Silverman's.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Nov 14 at 4:43









        Lord Shark the Unknown

        97.5k958128




        97.5k958128






























             

            draft saved


            draft discarded



















































             


            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2997763%2fwhat-happens-to-the-group-structure-of-an-elliptic-curve-over-a-field-when-the-d%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            How to change which sound is reproduced for terminal bell?

            Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents

            Can I use Tabulator js library in my java Spring + Thymeleaf project?