Inverse fourier transform for function with three variables
up vote
0
down vote
favorite
I'm following a textbook in which they introduce
$V_{p,q}(omega,tau,z)= frac{1}{2pi} int e^{-ih(tau-(p+q)z/c)}U_{p,q}(omega,h,z)dh$
where $p$ and $q$ are integers. How do I find an expression for $U_{p,q}$?
fourier-transform
add a comment |
up vote
0
down vote
favorite
I'm following a textbook in which they introduce
$V_{p,q}(omega,tau,z)= frac{1}{2pi} int e^{-ih(tau-(p+q)z/c)}U_{p,q}(omega,h,z)dh$
where $p$ and $q$ are integers. How do I find an expression for $U_{p,q}$?
fourier-transform
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
I'm following a textbook in which they introduce
$V_{p,q}(omega,tau,z)= frac{1}{2pi} int e^{-ih(tau-(p+q)z/c)}U_{p,q}(omega,h,z)dh$
where $p$ and $q$ are integers. How do I find an expression for $U_{p,q}$?
fourier-transform
I'm following a textbook in which they introduce
$V_{p,q}(omega,tau,z)= frac{1}{2pi} int e^{-ih(tau-(p+q)z/c)}U_{p,q}(omega,h,z)dh$
where $p$ and $q$ are integers. How do I find an expression for $U_{p,q}$?
fourier-transform
fourier-transform
asked Nov 15 at 14:18
kroneckerdel69
85
85
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
up vote
0
down vote
Using the Fourier Transform convention
$$mathscr{F}left{f(tau)right} = int_{-infty}^{infty} f(tau)e^{ihtau} dtau = hat{f}(h)$$
$$mathscr{F}^{-1}left{hat{f}(h)right} = dfrac{1}{2pi}int_{-infty}^{infty} hat{f}(h)e^{-ihtau} dh = f(tau)$$
Then
$$begin{align*}V_{p,q}left(omega,tau,zright)&= frac{1}{2pi} int_{-infty}^{infty} e^{-ih(tau - (p+q)z/c)}U_{p,q}left(omega,h,zright)dh\
\
&= frac{1}{2pi} int_{-infty}^{infty} e^{-ihtau}e^{ihfrac{(p+q)z}{c}}U_{p,q}left(omega,h,zright)dh\
\
&= mathscr{F}^{-1}left{e^{ihfrac{(p+q)z}{c}}U_{p,q}left(omega,h,zright)right}\
\
mathscr{F}left{V_{p,q}left(omega,tau,zright)right} &=e^{ihfrac{(p+q)z}{c}}U_{p,q}left(omega,h,zright) \
\
e^{-ihfrac{(p+q)z}{c}}mathscr{F}left{V_{p,q}left(omega,tau,zright)right} &=U_{p,q}left(omega,h,zright) \
\
e^{-ihfrac{(p+q)z}{c}}int_{-infty}^{infty}e^{ihtau}V_{p,q}left(omega,tau,zright)dtau &=U_{p,q}left(omega,h,zright) \
\int_{-infty}^{infty}e^{ihleft(tau-frac{(p+q)z}{c}right)}V_{p,q}left(omega,tau,zright)dtau &=U_{p,q}left(omega,h,zright) \
end{align*}$$
which shouldn't be a surprise.
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
Using the Fourier Transform convention
$$mathscr{F}left{f(tau)right} = int_{-infty}^{infty} f(tau)e^{ihtau} dtau = hat{f}(h)$$
$$mathscr{F}^{-1}left{hat{f}(h)right} = dfrac{1}{2pi}int_{-infty}^{infty} hat{f}(h)e^{-ihtau} dh = f(tau)$$
Then
$$begin{align*}V_{p,q}left(omega,tau,zright)&= frac{1}{2pi} int_{-infty}^{infty} e^{-ih(tau - (p+q)z/c)}U_{p,q}left(omega,h,zright)dh\
\
&= frac{1}{2pi} int_{-infty}^{infty} e^{-ihtau}e^{ihfrac{(p+q)z}{c}}U_{p,q}left(omega,h,zright)dh\
\
&= mathscr{F}^{-1}left{e^{ihfrac{(p+q)z}{c}}U_{p,q}left(omega,h,zright)right}\
\
mathscr{F}left{V_{p,q}left(omega,tau,zright)right} &=e^{ihfrac{(p+q)z}{c}}U_{p,q}left(omega,h,zright) \
\
e^{-ihfrac{(p+q)z}{c}}mathscr{F}left{V_{p,q}left(omega,tau,zright)right} &=U_{p,q}left(omega,h,zright) \
\
e^{-ihfrac{(p+q)z}{c}}int_{-infty}^{infty}e^{ihtau}V_{p,q}left(omega,tau,zright)dtau &=U_{p,q}left(omega,h,zright) \
\int_{-infty}^{infty}e^{ihleft(tau-frac{(p+q)z}{c}right)}V_{p,q}left(omega,tau,zright)dtau &=U_{p,q}left(omega,h,zright) \
end{align*}$$
which shouldn't be a surprise.
add a comment |
up vote
0
down vote
Using the Fourier Transform convention
$$mathscr{F}left{f(tau)right} = int_{-infty}^{infty} f(tau)e^{ihtau} dtau = hat{f}(h)$$
$$mathscr{F}^{-1}left{hat{f}(h)right} = dfrac{1}{2pi}int_{-infty}^{infty} hat{f}(h)e^{-ihtau} dh = f(tau)$$
Then
$$begin{align*}V_{p,q}left(omega,tau,zright)&= frac{1}{2pi} int_{-infty}^{infty} e^{-ih(tau - (p+q)z/c)}U_{p,q}left(omega,h,zright)dh\
\
&= frac{1}{2pi} int_{-infty}^{infty} e^{-ihtau}e^{ihfrac{(p+q)z}{c}}U_{p,q}left(omega,h,zright)dh\
\
&= mathscr{F}^{-1}left{e^{ihfrac{(p+q)z}{c}}U_{p,q}left(omega,h,zright)right}\
\
mathscr{F}left{V_{p,q}left(omega,tau,zright)right} &=e^{ihfrac{(p+q)z}{c}}U_{p,q}left(omega,h,zright) \
\
e^{-ihfrac{(p+q)z}{c}}mathscr{F}left{V_{p,q}left(omega,tau,zright)right} &=U_{p,q}left(omega,h,zright) \
\
e^{-ihfrac{(p+q)z}{c}}int_{-infty}^{infty}e^{ihtau}V_{p,q}left(omega,tau,zright)dtau &=U_{p,q}left(omega,h,zright) \
\int_{-infty}^{infty}e^{ihleft(tau-frac{(p+q)z}{c}right)}V_{p,q}left(omega,tau,zright)dtau &=U_{p,q}left(omega,h,zright) \
end{align*}$$
which shouldn't be a surprise.
add a comment |
up vote
0
down vote
up vote
0
down vote
Using the Fourier Transform convention
$$mathscr{F}left{f(tau)right} = int_{-infty}^{infty} f(tau)e^{ihtau} dtau = hat{f}(h)$$
$$mathscr{F}^{-1}left{hat{f}(h)right} = dfrac{1}{2pi}int_{-infty}^{infty} hat{f}(h)e^{-ihtau} dh = f(tau)$$
Then
$$begin{align*}V_{p,q}left(omega,tau,zright)&= frac{1}{2pi} int_{-infty}^{infty} e^{-ih(tau - (p+q)z/c)}U_{p,q}left(omega,h,zright)dh\
\
&= frac{1}{2pi} int_{-infty}^{infty} e^{-ihtau}e^{ihfrac{(p+q)z}{c}}U_{p,q}left(omega,h,zright)dh\
\
&= mathscr{F}^{-1}left{e^{ihfrac{(p+q)z}{c}}U_{p,q}left(omega,h,zright)right}\
\
mathscr{F}left{V_{p,q}left(omega,tau,zright)right} &=e^{ihfrac{(p+q)z}{c}}U_{p,q}left(omega,h,zright) \
\
e^{-ihfrac{(p+q)z}{c}}mathscr{F}left{V_{p,q}left(omega,tau,zright)right} &=U_{p,q}left(omega,h,zright) \
\
e^{-ihfrac{(p+q)z}{c}}int_{-infty}^{infty}e^{ihtau}V_{p,q}left(omega,tau,zright)dtau &=U_{p,q}left(omega,h,zright) \
\int_{-infty}^{infty}e^{ihleft(tau-frac{(p+q)z}{c}right)}V_{p,q}left(omega,tau,zright)dtau &=U_{p,q}left(omega,h,zright) \
end{align*}$$
which shouldn't be a surprise.
Using the Fourier Transform convention
$$mathscr{F}left{f(tau)right} = int_{-infty}^{infty} f(tau)e^{ihtau} dtau = hat{f}(h)$$
$$mathscr{F}^{-1}left{hat{f}(h)right} = dfrac{1}{2pi}int_{-infty}^{infty} hat{f}(h)e^{-ihtau} dh = f(tau)$$
Then
$$begin{align*}V_{p,q}left(omega,tau,zright)&= frac{1}{2pi} int_{-infty}^{infty} e^{-ih(tau - (p+q)z/c)}U_{p,q}left(omega,h,zright)dh\
\
&= frac{1}{2pi} int_{-infty}^{infty} e^{-ihtau}e^{ihfrac{(p+q)z}{c}}U_{p,q}left(omega,h,zright)dh\
\
&= mathscr{F}^{-1}left{e^{ihfrac{(p+q)z}{c}}U_{p,q}left(omega,h,zright)right}\
\
mathscr{F}left{V_{p,q}left(omega,tau,zright)right} &=e^{ihfrac{(p+q)z}{c}}U_{p,q}left(omega,h,zright) \
\
e^{-ihfrac{(p+q)z}{c}}mathscr{F}left{V_{p,q}left(omega,tau,zright)right} &=U_{p,q}left(omega,h,zright) \
\
e^{-ihfrac{(p+q)z}{c}}int_{-infty}^{infty}e^{ihtau}V_{p,q}left(omega,tau,zright)dtau &=U_{p,q}left(omega,h,zright) \
\int_{-infty}^{infty}e^{ihleft(tau-frac{(p+q)z}{c}right)}V_{p,q}left(omega,tau,zright)dtau &=U_{p,q}left(omega,h,zright) \
end{align*}$$
which shouldn't be a surprise.
answered Nov 16 at 14:19
Andy Walls
1,324126
1,324126
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2999759%2finverse-fourier-transform-for-function-with-three-variables%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown