Taylor series of $frac{2e^x}{e^{2x}+1}$
up vote
1
down vote
favorite
Consider the Taylor series of function $$frac{2e^x}{e^{2x}+1}=sum_{n=0}^infty frac{E_n}{n!}x^n$$
Prove that
$$E_0=1, E_{2n-1}=0, E_{2n}=-sum_{l=0}^{n-1}binom{2n}{2l}E_{2l}, ngeq 1$$.
I am thinking to write the LHS as $frac{1}{frac{e^x+e^{-x}}{2}}=frac{1}{cosh x}$, but I am stuck here. How can I derive the above recurrence relation? Any enlightenment please?
sequences-and-series power-series taylor-expansion
add a comment |
up vote
1
down vote
favorite
Consider the Taylor series of function $$frac{2e^x}{e^{2x}+1}=sum_{n=0}^infty frac{E_n}{n!}x^n$$
Prove that
$$E_0=1, E_{2n-1}=0, E_{2n}=-sum_{l=0}^{n-1}binom{2n}{2l}E_{2l}, ngeq 1$$.
I am thinking to write the LHS as $frac{1}{frac{e^x+e^{-x}}{2}}=frac{1}{cosh x}$, but I am stuck here. How can I derive the above recurrence relation? Any enlightenment please?
sequences-and-series power-series taylor-expansion
add a comment |
up vote
1
down vote
favorite
up vote
1
down vote
favorite
Consider the Taylor series of function $$frac{2e^x}{e^{2x}+1}=sum_{n=0}^infty frac{E_n}{n!}x^n$$
Prove that
$$E_0=1, E_{2n-1}=0, E_{2n}=-sum_{l=0}^{n-1}binom{2n}{2l}E_{2l}, ngeq 1$$.
I am thinking to write the LHS as $frac{1}{frac{e^x+e^{-x}}{2}}=frac{1}{cosh x}$, but I am stuck here. How can I derive the above recurrence relation? Any enlightenment please?
sequences-and-series power-series taylor-expansion
Consider the Taylor series of function $$frac{2e^x}{e^{2x}+1}=sum_{n=0}^infty frac{E_n}{n!}x^n$$
Prove that
$$E_0=1, E_{2n-1}=0, E_{2n}=-sum_{l=0}^{n-1}binom{2n}{2l}E_{2l}, ngeq 1$$.
I am thinking to write the LHS as $frac{1}{frac{e^x+e^{-x}}{2}}=frac{1}{cosh x}$, but I am stuck here. How can I derive the above recurrence relation? Any enlightenment please?
sequences-and-series power-series taylor-expansion
sequences-and-series power-series taylor-expansion
edited Nov 13 at 13:46
amWhy
191k27223437
191k27223437
asked Nov 13 at 13:27
user122049
804715
804715
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
up vote
1
down vote
accepted
You want
$$
left(sum_{n=0}^inftyfrac{E_n}{n!}x^nright)cosh x=1
$$
i.e.
$$
left(sum_{n=0}^inftyfrac{E_n}{n!}x^nright)
left(sum_{m=0}^inftyfrac1{(2m)!}x^{2m}right)=1.
$$
Now expand the series in the LHS. Clearly all $E_n$ for $n$ odd must vanish, or there will be a least $n$, $n$ odd, such that $E_nneq 0$. Then the coefficient of $x^n$ would not vanish.
So $E_0=1$, $E_{2n+1}=0$ for all $n$, and the coefficient of $x^{2n}$ gives
$$
sum_{m=0}^nfrac{E_{2(n-m)}}{[2(n-m)]!(2m)!}=0
$$
which rearrange to the recurrence equation (remember $frac{(2n)!}{[2(n-m)]!(2m)!}=binom{2n}{2(n-m)}$).
add a comment |
up vote
0
down vote
note that:
$$arctan(y)=sum_{n=0}^inftyfrac{(-1)^n}{2n+1}x^{2n+1}$$
and:
$$frac{2e^x}{e^{2x}+1}=frac{d}{dx}left[arctan(e^x)right]$$
so:
$$arctan(e^x)=sum_{n=0}^inftyfrac{(-1)^n}{2n+1}e^{(2n+1)x}$$
so:
$$frac{2e^x}{e^{2x}+1}=sum_{n=0}^infty(-1)^ne^{(2n+1)x}$$
and we know:
$$e^x=sum_{m=0}^inftyfrac{x^m}{m!}$$
now we can say:
$$frac{2e^x}{e^{2x}+1}=sum_{n=0}^inftysum_{m=0}^inftyfrac{(-1)^nleft[(2n+1)xright]^m}{m!}$$
add a comment |
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
You want
$$
left(sum_{n=0}^inftyfrac{E_n}{n!}x^nright)cosh x=1
$$
i.e.
$$
left(sum_{n=0}^inftyfrac{E_n}{n!}x^nright)
left(sum_{m=0}^inftyfrac1{(2m)!}x^{2m}right)=1.
$$
Now expand the series in the LHS. Clearly all $E_n$ for $n$ odd must vanish, or there will be a least $n$, $n$ odd, such that $E_nneq 0$. Then the coefficient of $x^n$ would not vanish.
So $E_0=1$, $E_{2n+1}=0$ for all $n$, and the coefficient of $x^{2n}$ gives
$$
sum_{m=0}^nfrac{E_{2(n-m)}}{[2(n-m)]!(2m)!}=0
$$
which rearrange to the recurrence equation (remember $frac{(2n)!}{[2(n-m)]!(2m)!}=binom{2n}{2(n-m)}$).
add a comment |
up vote
1
down vote
accepted
You want
$$
left(sum_{n=0}^inftyfrac{E_n}{n!}x^nright)cosh x=1
$$
i.e.
$$
left(sum_{n=0}^inftyfrac{E_n}{n!}x^nright)
left(sum_{m=0}^inftyfrac1{(2m)!}x^{2m}right)=1.
$$
Now expand the series in the LHS. Clearly all $E_n$ for $n$ odd must vanish, or there will be a least $n$, $n$ odd, such that $E_nneq 0$. Then the coefficient of $x^n$ would not vanish.
So $E_0=1$, $E_{2n+1}=0$ for all $n$, and the coefficient of $x^{2n}$ gives
$$
sum_{m=0}^nfrac{E_{2(n-m)}}{[2(n-m)]!(2m)!}=0
$$
which rearrange to the recurrence equation (remember $frac{(2n)!}{[2(n-m)]!(2m)!}=binom{2n}{2(n-m)}$).
add a comment |
up vote
1
down vote
accepted
up vote
1
down vote
accepted
You want
$$
left(sum_{n=0}^inftyfrac{E_n}{n!}x^nright)cosh x=1
$$
i.e.
$$
left(sum_{n=0}^inftyfrac{E_n}{n!}x^nright)
left(sum_{m=0}^inftyfrac1{(2m)!}x^{2m}right)=1.
$$
Now expand the series in the LHS. Clearly all $E_n$ for $n$ odd must vanish, or there will be a least $n$, $n$ odd, such that $E_nneq 0$. Then the coefficient of $x^n$ would not vanish.
So $E_0=1$, $E_{2n+1}=0$ for all $n$, and the coefficient of $x^{2n}$ gives
$$
sum_{m=0}^nfrac{E_{2(n-m)}}{[2(n-m)]!(2m)!}=0
$$
which rearrange to the recurrence equation (remember $frac{(2n)!}{[2(n-m)]!(2m)!}=binom{2n}{2(n-m)}$).
You want
$$
left(sum_{n=0}^inftyfrac{E_n}{n!}x^nright)cosh x=1
$$
i.e.
$$
left(sum_{n=0}^inftyfrac{E_n}{n!}x^nright)
left(sum_{m=0}^inftyfrac1{(2m)!}x^{2m}right)=1.
$$
Now expand the series in the LHS. Clearly all $E_n$ for $n$ odd must vanish, or there will be a least $n$, $n$ odd, such that $E_nneq 0$. Then the coefficient of $x^n$ would not vanish.
So $E_0=1$, $E_{2n+1}=0$ for all $n$, and the coefficient of $x^{2n}$ gives
$$
sum_{m=0}^nfrac{E_{2(n-m)}}{[2(n-m)]!(2m)!}=0
$$
which rearrange to the recurrence equation (remember $frac{(2n)!}{[2(n-m)]!(2m)!}=binom{2n}{2(n-m)}$).
answered Nov 13 at 13:44
user10354138
6,314623
6,314623
add a comment |
add a comment |
up vote
0
down vote
note that:
$$arctan(y)=sum_{n=0}^inftyfrac{(-1)^n}{2n+1}x^{2n+1}$$
and:
$$frac{2e^x}{e^{2x}+1}=frac{d}{dx}left[arctan(e^x)right]$$
so:
$$arctan(e^x)=sum_{n=0}^inftyfrac{(-1)^n}{2n+1}e^{(2n+1)x}$$
so:
$$frac{2e^x}{e^{2x}+1}=sum_{n=0}^infty(-1)^ne^{(2n+1)x}$$
and we know:
$$e^x=sum_{m=0}^inftyfrac{x^m}{m!}$$
now we can say:
$$frac{2e^x}{e^{2x}+1}=sum_{n=0}^inftysum_{m=0}^inftyfrac{(-1)^nleft[(2n+1)xright]^m}{m!}$$
add a comment |
up vote
0
down vote
note that:
$$arctan(y)=sum_{n=0}^inftyfrac{(-1)^n}{2n+1}x^{2n+1}$$
and:
$$frac{2e^x}{e^{2x}+1}=frac{d}{dx}left[arctan(e^x)right]$$
so:
$$arctan(e^x)=sum_{n=0}^inftyfrac{(-1)^n}{2n+1}e^{(2n+1)x}$$
so:
$$frac{2e^x}{e^{2x}+1}=sum_{n=0}^infty(-1)^ne^{(2n+1)x}$$
and we know:
$$e^x=sum_{m=0}^inftyfrac{x^m}{m!}$$
now we can say:
$$frac{2e^x}{e^{2x}+1}=sum_{n=0}^inftysum_{m=0}^inftyfrac{(-1)^nleft[(2n+1)xright]^m}{m!}$$
add a comment |
up vote
0
down vote
up vote
0
down vote
note that:
$$arctan(y)=sum_{n=0}^inftyfrac{(-1)^n}{2n+1}x^{2n+1}$$
and:
$$frac{2e^x}{e^{2x}+1}=frac{d}{dx}left[arctan(e^x)right]$$
so:
$$arctan(e^x)=sum_{n=0}^inftyfrac{(-1)^n}{2n+1}e^{(2n+1)x}$$
so:
$$frac{2e^x}{e^{2x}+1}=sum_{n=0}^infty(-1)^ne^{(2n+1)x}$$
and we know:
$$e^x=sum_{m=0}^inftyfrac{x^m}{m!}$$
now we can say:
$$frac{2e^x}{e^{2x}+1}=sum_{n=0}^inftysum_{m=0}^inftyfrac{(-1)^nleft[(2n+1)xright]^m}{m!}$$
note that:
$$arctan(y)=sum_{n=0}^inftyfrac{(-1)^n}{2n+1}x^{2n+1}$$
and:
$$frac{2e^x}{e^{2x}+1}=frac{d}{dx}left[arctan(e^x)right]$$
so:
$$arctan(e^x)=sum_{n=0}^inftyfrac{(-1)^n}{2n+1}e^{(2n+1)x}$$
so:
$$frac{2e^x}{e^{2x}+1}=sum_{n=0}^infty(-1)^ne^{(2n+1)x}$$
and we know:
$$e^x=sum_{m=0}^inftyfrac{x^m}{m!}$$
now we can say:
$$frac{2e^x}{e^{2x}+1}=sum_{n=0}^inftysum_{m=0}^inftyfrac{(-1)^nleft[(2n+1)xright]^m}{m!}$$
answered Nov 13 at 13:39
Henry Lee
1,626117
1,626117
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2996728%2ftaylor-series-of-frac2exe2x1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown