Taylor series of $frac{2e^x}{e^{2x}+1}$











up vote
1
down vote

favorite












Consider the Taylor series of function $$frac{2e^x}{e^{2x}+1}=sum_{n=0}^infty frac{E_n}{n!}x^n$$
Prove that
$$E_0=1, E_{2n-1}=0, E_{2n}=-sum_{l=0}^{n-1}binom{2n}{2l}E_{2l}, ngeq 1$$.



I am thinking to write the LHS as $frac{1}{frac{e^x+e^{-x}}{2}}=frac{1}{cosh x}$, but I am stuck here. How can I derive the above recurrence relation? Any enlightenment please?










share|cite|improve this question




























    up vote
    1
    down vote

    favorite












    Consider the Taylor series of function $$frac{2e^x}{e^{2x}+1}=sum_{n=0}^infty frac{E_n}{n!}x^n$$
    Prove that
    $$E_0=1, E_{2n-1}=0, E_{2n}=-sum_{l=0}^{n-1}binom{2n}{2l}E_{2l}, ngeq 1$$.



    I am thinking to write the LHS as $frac{1}{frac{e^x+e^{-x}}{2}}=frac{1}{cosh x}$, but I am stuck here. How can I derive the above recurrence relation? Any enlightenment please?










    share|cite|improve this question


























      up vote
      1
      down vote

      favorite









      up vote
      1
      down vote

      favorite











      Consider the Taylor series of function $$frac{2e^x}{e^{2x}+1}=sum_{n=0}^infty frac{E_n}{n!}x^n$$
      Prove that
      $$E_0=1, E_{2n-1}=0, E_{2n}=-sum_{l=0}^{n-1}binom{2n}{2l}E_{2l}, ngeq 1$$.



      I am thinking to write the LHS as $frac{1}{frac{e^x+e^{-x}}{2}}=frac{1}{cosh x}$, but I am stuck here. How can I derive the above recurrence relation? Any enlightenment please?










      share|cite|improve this question















      Consider the Taylor series of function $$frac{2e^x}{e^{2x}+1}=sum_{n=0}^infty frac{E_n}{n!}x^n$$
      Prove that
      $$E_0=1, E_{2n-1}=0, E_{2n}=-sum_{l=0}^{n-1}binom{2n}{2l}E_{2l}, ngeq 1$$.



      I am thinking to write the LHS as $frac{1}{frac{e^x+e^{-x}}{2}}=frac{1}{cosh x}$, but I am stuck here. How can I derive the above recurrence relation? Any enlightenment please?







      sequences-and-series power-series taylor-expansion






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Nov 13 at 13:46









      amWhy

      191k27223437




      191k27223437










      asked Nov 13 at 13:27









      user122049

      804715




      804715






















          2 Answers
          2






          active

          oldest

          votes

















          up vote
          1
          down vote



          accepted










          You want
          $$
          left(sum_{n=0}^inftyfrac{E_n}{n!}x^nright)cosh x=1
          $$

          i.e.
          $$
          left(sum_{n=0}^inftyfrac{E_n}{n!}x^nright)
          left(sum_{m=0}^inftyfrac1{(2m)!}x^{2m}right)=1.
          $$

          Now expand the series in the LHS. Clearly all $E_n$ for $n$ odd must vanish, or there will be a least $n$, $n$ odd, such that $E_nneq 0$. Then the coefficient of $x^n$ would not vanish.



          So $E_0=1$, $E_{2n+1}=0$ for all $n$, and the coefficient of $x^{2n}$ gives
          $$
          sum_{m=0}^nfrac{E_{2(n-m)}}{[2(n-m)]!(2m)!}=0
          $$

          which rearrange to the recurrence equation (remember $frac{(2n)!}{[2(n-m)]!(2m)!}=binom{2n}{2(n-m)}$).






          share|cite|improve this answer




























            up vote
            0
            down vote













            note that:
            $$arctan(y)=sum_{n=0}^inftyfrac{(-1)^n}{2n+1}x^{2n+1}$$
            and:
            $$frac{2e^x}{e^{2x}+1}=frac{d}{dx}left[arctan(e^x)right]$$
            so:
            $$arctan(e^x)=sum_{n=0}^inftyfrac{(-1)^n}{2n+1}e^{(2n+1)x}$$
            so:
            $$frac{2e^x}{e^{2x}+1}=sum_{n=0}^infty(-1)^ne^{(2n+1)x}$$
            and we know:
            $$e^x=sum_{m=0}^inftyfrac{x^m}{m!}$$
            now we can say:
            $$frac{2e^x}{e^{2x}+1}=sum_{n=0}^inftysum_{m=0}^inftyfrac{(-1)^nleft[(2n+1)xright]^m}{m!}$$






            share|cite|improve this answer





















              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














               

              draft saved


              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2996728%2ftaylor-series-of-frac2exe2x1%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes








              up vote
              1
              down vote



              accepted










              You want
              $$
              left(sum_{n=0}^inftyfrac{E_n}{n!}x^nright)cosh x=1
              $$

              i.e.
              $$
              left(sum_{n=0}^inftyfrac{E_n}{n!}x^nright)
              left(sum_{m=0}^inftyfrac1{(2m)!}x^{2m}right)=1.
              $$

              Now expand the series in the LHS. Clearly all $E_n$ for $n$ odd must vanish, or there will be a least $n$, $n$ odd, such that $E_nneq 0$. Then the coefficient of $x^n$ would not vanish.



              So $E_0=1$, $E_{2n+1}=0$ for all $n$, and the coefficient of $x^{2n}$ gives
              $$
              sum_{m=0}^nfrac{E_{2(n-m)}}{[2(n-m)]!(2m)!}=0
              $$

              which rearrange to the recurrence equation (remember $frac{(2n)!}{[2(n-m)]!(2m)!}=binom{2n}{2(n-m)}$).






              share|cite|improve this answer

























                up vote
                1
                down vote



                accepted










                You want
                $$
                left(sum_{n=0}^inftyfrac{E_n}{n!}x^nright)cosh x=1
                $$

                i.e.
                $$
                left(sum_{n=0}^inftyfrac{E_n}{n!}x^nright)
                left(sum_{m=0}^inftyfrac1{(2m)!}x^{2m}right)=1.
                $$

                Now expand the series in the LHS. Clearly all $E_n$ for $n$ odd must vanish, or there will be a least $n$, $n$ odd, such that $E_nneq 0$. Then the coefficient of $x^n$ would not vanish.



                So $E_0=1$, $E_{2n+1}=0$ for all $n$, and the coefficient of $x^{2n}$ gives
                $$
                sum_{m=0}^nfrac{E_{2(n-m)}}{[2(n-m)]!(2m)!}=0
                $$

                which rearrange to the recurrence equation (remember $frac{(2n)!}{[2(n-m)]!(2m)!}=binom{2n}{2(n-m)}$).






                share|cite|improve this answer























                  up vote
                  1
                  down vote



                  accepted







                  up vote
                  1
                  down vote



                  accepted






                  You want
                  $$
                  left(sum_{n=0}^inftyfrac{E_n}{n!}x^nright)cosh x=1
                  $$

                  i.e.
                  $$
                  left(sum_{n=0}^inftyfrac{E_n}{n!}x^nright)
                  left(sum_{m=0}^inftyfrac1{(2m)!}x^{2m}right)=1.
                  $$

                  Now expand the series in the LHS. Clearly all $E_n$ for $n$ odd must vanish, or there will be a least $n$, $n$ odd, such that $E_nneq 0$. Then the coefficient of $x^n$ would not vanish.



                  So $E_0=1$, $E_{2n+1}=0$ for all $n$, and the coefficient of $x^{2n}$ gives
                  $$
                  sum_{m=0}^nfrac{E_{2(n-m)}}{[2(n-m)]!(2m)!}=0
                  $$

                  which rearrange to the recurrence equation (remember $frac{(2n)!}{[2(n-m)]!(2m)!}=binom{2n}{2(n-m)}$).






                  share|cite|improve this answer












                  You want
                  $$
                  left(sum_{n=0}^inftyfrac{E_n}{n!}x^nright)cosh x=1
                  $$

                  i.e.
                  $$
                  left(sum_{n=0}^inftyfrac{E_n}{n!}x^nright)
                  left(sum_{m=0}^inftyfrac1{(2m)!}x^{2m}right)=1.
                  $$

                  Now expand the series in the LHS. Clearly all $E_n$ for $n$ odd must vanish, or there will be a least $n$, $n$ odd, such that $E_nneq 0$. Then the coefficient of $x^n$ would not vanish.



                  So $E_0=1$, $E_{2n+1}=0$ for all $n$, and the coefficient of $x^{2n}$ gives
                  $$
                  sum_{m=0}^nfrac{E_{2(n-m)}}{[2(n-m)]!(2m)!}=0
                  $$

                  which rearrange to the recurrence equation (remember $frac{(2n)!}{[2(n-m)]!(2m)!}=binom{2n}{2(n-m)}$).







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Nov 13 at 13:44









                  user10354138

                  6,314623




                  6,314623






















                      up vote
                      0
                      down vote













                      note that:
                      $$arctan(y)=sum_{n=0}^inftyfrac{(-1)^n}{2n+1}x^{2n+1}$$
                      and:
                      $$frac{2e^x}{e^{2x}+1}=frac{d}{dx}left[arctan(e^x)right]$$
                      so:
                      $$arctan(e^x)=sum_{n=0}^inftyfrac{(-1)^n}{2n+1}e^{(2n+1)x}$$
                      so:
                      $$frac{2e^x}{e^{2x}+1}=sum_{n=0}^infty(-1)^ne^{(2n+1)x}$$
                      and we know:
                      $$e^x=sum_{m=0}^inftyfrac{x^m}{m!}$$
                      now we can say:
                      $$frac{2e^x}{e^{2x}+1}=sum_{n=0}^inftysum_{m=0}^inftyfrac{(-1)^nleft[(2n+1)xright]^m}{m!}$$






                      share|cite|improve this answer

























                        up vote
                        0
                        down vote













                        note that:
                        $$arctan(y)=sum_{n=0}^inftyfrac{(-1)^n}{2n+1}x^{2n+1}$$
                        and:
                        $$frac{2e^x}{e^{2x}+1}=frac{d}{dx}left[arctan(e^x)right]$$
                        so:
                        $$arctan(e^x)=sum_{n=0}^inftyfrac{(-1)^n}{2n+1}e^{(2n+1)x}$$
                        so:
                        $$frac{2e^x}{e^{2x}+1}=sum_{n=0}^infty(-1)^ne^{(2n+1)x}$$
                        and we know:
                        $$e^x=sum_{m=0}^inftyfrac{x^m}{m!}$$
                        now we can say:
                        $$frac{2e^x}{e^{2x}+1}=sum_{n=0}^inftysum_{m=0}^inftyfrac{(-1)^nleft[(2n+1)xright]^m}{m!}$$






                        share|cite|improve this answer























                          up vote
                          0
                          down vote










                          up vote
                          0
                          down vote









                          note that:
                          $$arctan(y)=sum_{n=0}^inftyfrac{(-1)^n}{2n+1}x^{2n+1}$$
                          and:
                          $$frac{2e^x}{e^{2x}+1}=frac{d}{dx}left[arctan(e^x)right]$$
                          so:
                          $$arctan(e^x)=sum_{n=0}^inftyfrac{(-1)^n}{2n+1}e^{(2n+1)x}$$
                          so:
                          $$frac{2e^x}{e^{2x}+1}=sum_{n=0}^infty(-1)^ne^{(2n+1)x}$$
                          and we know:
                          $$e^x=sum_{m=0}^inftyfrac{x^m}{m!}$$
                          now we can say:
                          $$frac{2e^x}{e^{2x}+1}=sum_{n=0}^inftysum_{m=0}^inftyfrac{(-1)^nleft[(2n+1)xright]^m}{m!}$$






                          share|cite|improve this answer












                          note that:
                          $$arctan(y)=sum_{n=0}^inftyfrac{(-1)^n}{2n+1}x^{2n+1}$$
                          and:
                          $$frac{2e^x}{e^{2x}+1}=frac{d}{dx}left[arctan(e^x)right]$$
                          so:
                          $$arctan(e^x)=sum_{n=0}^inftyfrac{(-1)^n}{2n+1}e^{(2n+1)x}$$
                          so:
                          $$frac{2e^x}{e^{2x}+1}=sum_{n=0}^infty(-1)^ne^{(2n+1)x}$$
                          and we know:
                          $$e^x=sum_{m=0}^inftyfrac{x^m}{m!}$$
                          now we can say:
                          $$frac{2e^x}{e^{2x}+1}=sum_{n=0}^inftysum_{m=0}^inftyfrac{(-1)^nleft[(2n+1)xright]^m}{m!}$$







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Nov 13 at 13:39









                          Henry Lee

                          1,626117




                          1,626117






























                               

                              draft saved


                              draft discarded



















































                               


                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2996728%2ftaylor-series-of-frac2exe2x1%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              mysqli_query(): Empty query in /home/lucindabrummitt/public_html/blog/wp-includes/wp-db.php on line 1924

                              How to change which sound is reproduced for terminal bell?

                              Can I use Tabulator js library in my java Spring + Thymeleaf project?