Tail probability distribution for sums of variables belonging to three different distributions











up vote
2
down vote

favorite












Assume we have given a natural number $N$, two sets $C$ and $D$ with cardinality $c,(N-c)$ respectively and random variables $e_{ij}$, where $i,j in {1,2,...,N}$.
Moreover these $e_{ij}$'s follow three different distributions depending on the indices:
$$ e_{ij} sim distr1 quad text{if $(i,j)in Dtimes D$} \
quad quad quad quad sim distr2 quad text{if $(i,j)in Ctimes D$ or $D times C$} \
quad sim distr3 quad text{if $(i,j)in Ctimes C$}
$$



For simplicity one can assume they are normal and all are independent.



I am interested in calculating the tail probability
$$mathbb{P}(sum_{i,j}e_{ij}-frac{1}{2}sum_{i=1}^N mid sum_{j=1}^{N-1}(e_{ij}-e_{ji} )mid > x)$$



My idea was to divide the terms depending to the 3 different cases: i.e.
$$mathbb{P}(sum_{i,j}e_{ij}-frac{1}{2}sum_{i=1}^n mid sum_{j=1}^{n-1}(e_{ij}-e_{ji} )mid > x) \= mathbb{P}(sum_{i,j}e_{ij}-frac{1}{2}(sum_{i in C} midsum_{j in C} sum_{j in D}(e_{ij}-e_{ji} ) mid + sum_{i in D} mid sum_{j in C}sum_{j in D}(e_{ij}-e_{ji} )mid )>x$$



And I could also split the first sum, which is summing over all random variables into
$$sum_{i,j}e_{ij}=sum_{i,j in C} e_{ij}+ (sum_{iin C,j in D} e_{ij} + sum_{iin D ,j in C} e_{ij}) + sum_{i,j in D} e_{ij}$$



But now I don't know how to proceed...



Any help is appreciated










share|cite|improve this question




























    up vote
    2
    down vote

    favorite












    Assume we have given a natural number $N$, two sets $C$ and $D$ with cardinality $c,(N-c)$ respectively and random variables $e_{ij}$, where $i,j in {1,2,...,N}$.
    Moreover these $e_{ij}$'s follow three different distributions depending on the indices:
    $$ e_{ij} sim distr1 quad text{if $(i,j)in Dtimes D$} \
    quad quad quad quad sim distr2 quad text{if $(i,j)in Ctimes D$ or $D times C$} \
    quad sim distr3 quad text{if $(i,j)in Ctimes C$}
    $$



    For simplicity one can assume they are normal and all are independent.



    I am interested in calculating the tail probability
    $$mathbb{P}(sum_{i,j}e_{ij}-frac{1}{2}sum_{i=1}^N mid sum_{j=1}^{N-1}(e_{ij}-e_{ji} )mid > x)$$



    My idea was to divide the terms depending to the 3 different cases: i.e.
    $$mathbb{P}(sum_{i,j}e_{ij}-frac{1}{2}sum_{i=1}^n mid sum_{j=1}^{n-1}(e_{ij}-e_{ji} )mid > x) \= mathbb{P}(sum_{i,j}e_{ij}-frac{1}{2}(sum_{i in C} midsum_{j in C} sum_{j in D}(e_{ij}-e_{ji} ) mid + sum_{i in D} mid sum_{j in C}sum_{j in D}(e_{ij}-e_{ji} )mid )>x$$



    And I could also split the first sum, which is summing over all random variables into
    $$sum_{i,j}e_{ij}=sum_{i,j in C} e_{ij}+ (sum_{iin C,j in D} e_{ij} + sum_{iin D ,j in C} e_{ij}) + sum_{i,j in D} e_{ij}$$



    But now I don't know how to proceed...



    Any help is appreciated










    share|cite|improve this question


























      up vote
      2
      down vote

      favorite









      up vote
      2
      down vote

      favorite











      Assume we have given a natural number $N$, two sets $C$ and $D$ with cardinality $c,(N-c)$ respectively and random variables $e_{ij}$, where $i,j in {1,2,...,N}$.
      Moreover these $e_{ij}$'s follow three different distributions depending on the indices:
      $$ e_{ij} sim distr1 quad text{if $(i,j)in Dtimes D$} \
      quad quad quad quad sim distr2 quad text{if $(i,j)in Ctimes D$ or $D times C$} \
      quad sim distr3 quad text{if $(i,j)in Ctimes C$}
      $$



      For simplicity one can assume they are normal and all are independent.



      I am interested in calculating the tail probability
      $$mathbb{P}(sum_{i,j}e_{ij}-frac{1}{2}sum_{i=1}^N mid sum_{j=1}^{N-1}(e_{ij}-e_{ji} )mid > x)$$



      My idea was to divide the terms depending to the 3 different cases: i.e.
      $$mathbb{P}(sum_{i,j}e_{ij}-frac{1}{2}sum_{i=1}^n mid sum_{j=1}^{n-1}(e_{ij}-e_{ji} )mid > x) \= mathbb{P}(sum_{i,j}e_{ij}-frac{1}{2}(sum_{i in C} midsum_{j in C} sum_{j in D}(e_{ij}-e_{ji} ) mid + sum_{i in D} mid sum_{j in C}sum_{j in D}(e_{ij}-e_{ji} )mid )>x$$



      And I could also split the first sum, which is summing over all random variables into
      $$sum_{i,j}e_{ij}=sum_{i,j in C} e_{ij}+ (sum_{iin C,j in D} e_{ij} + sum_{iin D ,j in C} e_{ij}) + sum_{i,j in D} e_{ij}$$



      But now I don't know how to proceed...



      Any help is appreciated










      share|cite|improve this question















      Assume we have given a natural number $N$, two sets $C$ and $D$ with cardinality $c,(N-c)$ respectively and random variables $e_{ij}$, where $i,j in {1,2,...,N}$.
      Moreover these $e_{ij}$'s follow three different distributions depending on the indices:
      $$ e_{ij} sim distr1 quad text{if $(i,j)in Dtimes D$} \
      quad quad quad quad sim distr2 quad text{if $(i,j)in Ctimes D$ or $D times C$} \
      quad sim distr3 quad text{if $(i,j)in Ctimes C$}
      $$



      For simplicity one can assume they are normal and all are independent.



      I am interested in calculating the tail probability
      $$mathbb{P}(sum_{i,j}e_{ij}-frac{1}{2}sum_{i=1}^N mid sum_{j=1}^{N-1}(e_{ij}-e_{ji} )mid > x)$$



      My idea was to divide the terms depending to the 3 different cases: i.e.
      $$mathbb{P}(sum_{i,j}e_{ij}-frac{1}{2}sum_{i=1}^n mid sum_{j=1}^{n-1}(e_{ij}-e_{ji} )mid > x) \= mathbb{P}(sum_{i,j}e_{ij}-frac{1}{2}(sum_{i in C} midsum_{j in C} sum_{j in D}(e_{ij}-e_{ji} ) mid + sum_{i in D} mid sum_{j in C}sum_{j in D}(e_{ij}-e_{ji} )mid )>x$$



      And I could also split the first sum, which is summing over all random variables into
      $$sum_{i,j}e_{ij}=sum_{i,j in C} e_{ij}+ (sum_{iin C,j in D} e_{ij} + sum_{iin D ,j in C} e_{ij}) + sum_{i,j in D} e_{ij}$$



      But now I don't know how to proceed...



      Any help is appreciated







      probability probability-theory probability-distributions






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Nov 13 at 12:42

























      asked Nov 3 at 12:48









      Alisat

      377




      377



























          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














           

          draft saved


          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2982845%2ftail-probability-distribution-for-sums-of-variables-belonging-to-three-different%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown






























          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















           

          draft saved


          draft discarded



















































           


          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2982845%2ftail-probability-distribution-for-sums-of-variables-belonging-to-three-different%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          How to change which sound is reproduced for terminal bell?

          Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents

          Can I use Tabulator js library in my java Spring + Thymeleaf project?