Solve a wave equation using D'Alembert solution.











up vote
0
down vote

favorite
2












Solve the PDE:



$begin{equation}
frac{partial^2u}{partial t^2} - frac{partial ^2 u}{partial x^2}=0, qquad 0<x<L,quad t>0 \
u(x,0)=f(x) qquad frac{partial u}{partial t }(x,0)=g(x)
end{equation}$



Find $u(x,t)$ for the values $f(x)=sin x$, $quad g(x)=0$ when $u(0,t)= 0$ and $frac{partial u}{partial x}(pi /2,t)=0$



My attempt



We know the PDE is only a wave equation, then applying D'Alembert formula we have:



$u(x,t)=frac{1}{2}[f(x-ct)+f(x+ct)]+frac{1}{2c}int^{x+ct}_{x-ct}g(s)ds. tag 1$



As $g(x)=$0 then $(1)$ is:



$u(x,t)=frac{1}{2}[f(x-t)+f(x+t)] tag 1$



Note we have a Neumman condition the we need make even periodic extension



Then
begin{equation}
f(x) = left{
begin{array}{ll}
sin(x) & mathrm{if } 0<x<frac{pi}{2} \
-sin(x) & mathrm{if } -frac{pi}{2}<x<0 \
end{array}
right.
end{equation}



such that $f(x pm pi/2)=f(x)$



This implies:



$
begin{equation}
f(x-t) = left{
begin{array}{ll}
sin(x-t) & mathrm{if } 0<x<frac{pi}{2} \
-sin(x-t) & mathrm{if } -frac{pi}{2}<x<0 \
end{array}
right.
end{equation}
$



and



$
begin{equation}
f(x+t) = left{
begin{array}{ll}
sin(x+t) & mathrm{if } 0<x<frac{pi}{2} \
-sin(x+t) & mathrm{if } -frac{pi}{2}<x<0 \
end{array}
right.
end{equation}
$



Is correct this?










share|cite|improve this question


























    up vote
    0
    down vote

    favorite
    2












    Solve the PDE:



    $begin{equation}
    frac{partial^2u}{partial t^2} - frac{partial ^2 u}{partial x^2}=0, qquad 0<x<L,quad t>0 \
    u(x,0)=f(x) qquad frac{partial u}{partial t }(x,0)=g(x)
    end{equation}$



    Find $u(x,t)$ for the values $f(x)=sin x$, $quad g(x)=0$ when $u(0,t)= 0$ and $frac{partial u}{partial x}(pi /2,t)=0$



    My attempt



    We know the PDE is only a wave equation, then applying D'Alembert formula we have:



    $u(x,t)=frac{1}{2}[f(x-ct)+f(x+ct)]+frac{1}{2c}int^{x+ct}_{x-ct}g(s)ds. tag 1$



    As $g(x)=$0 then $(1)$ is:



    $u(x,t)=frac{1}{2}[f(x-t)+f(x+t)] tag 1$



    Note we have a Neumman condition the we need make even periodic extension



    Then
    begin{equation}
    f(x) = left{
    begin{array}{ll}
    sin(x) & mathrm{if } 0<x<frac{pi}{2} \
    -sin(x) & mathrm{if } -frac{pi}{2}<x<0 \
    end{array}
    right.
    end{equation}



    such that $f(x pm pi/2)=f(x)$



    This implies:



    $
    begin{equation}
    f(x-t) = left{
    begin{array}{ll}
    sin(x-t) & mathrm{if } 0<x<frac{pi}{2} \
    -sin(x-t) & mathrm{if } -frac{pi}{2}<x<0 \
    end{array}
    right.
    end{equation}
    $



    and



    $
    begin{equation}
    f(x+t) = left{
    begin{array}{ll}
    sin(x+t) & mathrm{if } 0<x<frac{pi}{2} \
    -sin(x+t) & mathrm{if } -frac{pi}{2}<x<0 \
    end{array}
    right.
    end{equation}
    $



    Is correct this?










    share|cite|improve this question
























      up vote
      0
      down vote

      favorite
      2









      up vote
      0
      down vote

      favorite
      2






      2





      Solve the PDE:



      $begin{equation}
      frac{partial^2u}{partial t^2} - frac{partial ^2 u}{partial x^2}=0, qquad 0<x<L,quad t>0 \
      u(x,0)=f(x) qquad frac{partial u}{partial t }(x,0)=g(x)
      end{equation}$



      Find $u(x,t)$ for the values $f(x)=sin x$, $quad g(x)=0$ when $u(0,t)= 0$ and $frac{partial u}{partial x}(pi /2,t)=0$



      My attempt



      We know the PDE is only a wave equation, then applying D'Alembert formula we have:



      $u(x,t)=frac{1}{2}[f(x-ct)+f(x+ct)]+frac{1}{2c}int^{x+ct}_{x-ct}g(s)ds. tag 1$



      As $g(x)=$0 then $(1)$ is:



      $u(x,t)=frac{1}{2}[f(x-t)+f(x+t)] tag 1$



      Note we have a Neumman condition the we need make even periodic extension



      Then
      begin{equation}
      f(x) = left{
      begin{array}{ll}
      sin(x) & mathrm{if } 0<x<frac{pi}{2} \
      -sin(x) & mathrm{if } -frac{pi}{2}<x<0 \
      end{array}
      right.
      end{equation}



      such that $f(x pm pi/2)=f(x)$



      This implies:



      $
      begin{equation}
      f(x-t) = left{
      begin{array}{ll}
      sin(x-t) & mathrm{if } 0<x<frac{pi}{2} \
      -sin(x-t) & mathrm{if } -frac{pi}{2}<x<0 \
      end{array}
      right.
      end{equation}
      $



      and



      $
      begin{equation}
      f(x+t) = left{
      begin{array}{ll}
      sin(x+t) & mathrm{if } 0<x<frac{pi}{2} \
      -sin(x+t) & mathrm{if } -frac{pi}{2}<x<0 \
      end{array}
      right.
      end{equation}
      $



      Is correct this?










      share|cite|improve this question













      Solve the PDE:



      $begin{equation}
      frac{partial^2u}{partial t^2} - frac{partial ^2 u}{partial x^2}=0, qquad 0<x<L,quad t>0 \
      u(x,0)=f(x) qquad frac{partial u}{partial t }(x,0)=g(x)
      end{equation}$



      Find $u(x,t)$ for the values $f(x)=sin x$, $quad g(x)=0$ when $u(0,t)= 0$ and $frac{partial u}{partial x}(pi /2,t)=0$



      My attempt



      We know the PDE is only a wave equation, then applying D'Alembert formula we have:



      $u(x,t)=frac{1}{2}[f(x-ct)+f(x+ct)]+frac{1}{2c}int^{x+ct}_{x-ct}g(s)ds. tag 1$



      As $g(x)=$0 then $(1)$ is:



      $u(x,t)=frac{1}{2}[f(x-t)+f(x+t)] tag 1$



      Note we have a Neumman condition the we need make even periodic extension



      Then
      begin{equation}
      f(x) = left{
      begin{array}{ll}
      sin(x) & mathrm{if } 0<x<frac{pi}{2} \
      -sin(x) & mathrm{if } -frac{pi}{2}<x<0 \
      end{array}
      right.
      end{equation}



      such that $f(x pm pi/2)=f(x)$



      This implies:



      $
      begin{equation}
      f(x-t) = left{
      begin{array}{ll}
      sin(x-t) & mathrm{if } 0<x<frac{pi}{2} \
      -sin(x-t) & mathrm{if } -frac{pi}{2}<x<0 \
      end{array}
      right.
      end{equation}
      $



      and



      $
      begin{equation}
      f(x+t) = left{
      begin{array}{ll}
      sin(x+t) & mathrm{if } 0<x<frac{pi}{2} \
      -sin(x+t) & mathrm{if } -frac{pi}{2}<x<0 \
      end{array}
      right.
      end{equation}
      $



      Is correct this?







      pde






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Nov 12 at 16:28









      Bvss12

      1,715617




      1,715617



























          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














           

          draft saved


          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2995518%2fsolve-a-wave-equation-using-dalembert-solution%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown






























          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















           

          draft saved


          draft discarded



















































           


          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2995518%2fsolve-a-wave-equation-using-dalembert-solution%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          How to change which sound is reproduced for terminal bell?

          Can I use Tabulator js library in my java Spring + Thymeleaf project?

          Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents