Solve a wave equation using D'Alembert solution.
up vote
0
down vote
favorite
Solve the PDE:
$begin{equation}
frac{partial^2u}{partial t^2} - frac{partial ^2 u}{partial x^2}=0, qquad 0<x<L,quad t>0 \
u(x,0)=f(x) qquad frac{partial u}{partial t }(x,0)=g(x)
end{equation}$
Find $u(x,t)$ for the values $f(x)=sin x$, $quad g(x)=0$ when $u(0,t)= 0$ and $frac{partial u}{partial x}(pi /2,t)=0$
My attempt
We know the PDE is only a wave equation, then applying D'Alembert formula we have:
$u(x,t)=frac{1}{2}[f(x-ct)+f(x+ct)]+frac{1}{2c}int^{x+ct}_{x-ct}g(s)ds. tag 1$
As $g(x)=$0 then $(1)$ is:
$u(x,t)=frac{1}{2}[f(x-t)+f(x+t)] tag 1$
Note we have a Neumman condition the we need make even periodic extension
Then
begin{equation}
f(x) = left{
begin{array}{ll}
sin(x) & mathrm{if } 0<x<frac{pi}{2} \
-sin(x) & mathrm{if } -frac{pi}{2}<x<0 \
end{array}
right.
end{equation}
such that $f(x pm pi/2)=f(x)$
This implies:
$
begin{equation}
f(x-t) = left{
begin{array}{ll}
sin(x-t) & mathrm{if } 0<x<frac{pi}{2} \
-sin(x-t) & mathrm{if } -frac{pi}{2}<x<0 \
end{array}
right.
end{equation}
$
and
$
begin{equation}
f(x+t) = left{
begin{array}{ll}
sin(x+t) & mathrm{if } 0<x<frac{pi}{2} \
-sin(x+t) & mathrm{if } -frac{pi}{2}<x<0 \
end{array}
right.
end{equation}
$
Is correct this?
pde
add a comment |
up vote
0
down vote
favorite
Solve the PDE:
$begin{equation}
frac{partial^2u}{partial t^2} - frac{partial ^2 u}{partial x^2}=0, qquad 0<x<L,quad t>0 \
u(x,0)=f(x) qquad frac{partial u}{partial t }(x,0)=g(x)
end{equation}$
Find $u(x,t)$ for the values $f(x)=sin x$, $quad g(x)=0$ when $u(0,t)= 0$ and $frac{partial u}{partial x}(pi /2,t)=0$
My attempt
We know the PDE is only a wave equation, then applying D'Alembert formula we have:
$u(x,t)=frac{1}{2}[f(x-ct)+f(x+ct)]+frac{1}{2c}int^{x+ct}_{x-ct}g(s)ds. tag 1$
As $g(x)=$0 then $(1)$ is:
$u(x,t)=frac{1}{2}[f(x-t)+f(x+t)] tag 1$
Note we have a Neumman condition the we need make even periodic extension
Then
begin{equation}
f(x) = left{
begin{array}{ll}
sin(x) & mathrm{if } 0<x<frac{pi}{2} \
-sin(x) & mathrm{if } -frac{pi}{2}<x<0 \
end{array}
right.
end{equation}
such that $f(x pm pi/2)=f(x)$
This implies:
$
begin{equation}
f(x-t) = left{
begin{array}{ll}
sin(x-t) & mathrm{if } 0<x<frac{pi}{2} \
-sin(x-t) & mathrm{if } -frac{pi}{2}<x<0 \
end{array}
right.
end{equation}
$
and
$
begin{equation}
f(x+t) = left{
begin{array}{ll}
sin(x+t) & mathrm{if } 0<x<frac{pi}{2} \
-sin(x+t) & mathrm{if } -frac{pi}{2}<x<0 \
end{array}
right.
end{equation}
$
Is correct this?
pde
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Solve the PDE:
$begin{equation}
frac{partial^2u}{partial t^2} - frac{partial ^2 u}{partial x^2}=0, qquad 0<x<L,quad t>0 \
u(x,0)=f(x) qquad frac{partial u}{partial t }(x,0)=g(x)
end{equation}$
Find $u(x,t)$ for the values $f(x)=sin x$, $quad g(x)=0$ when $u(0,t)= 0$ and $frac{partial u}{partial x}(pi /2,t)=0$
My attempt
We know the PDE is only a wave equation, then applying D'Alembert formula we have:
$u(x,t)=frac{1}{2}[f(x-ct)+f(x+ct)]+frac{1}{2c}int^{x+ct}_{x-ct}g(s)ds. tag 1$
As $g(x)=$0 then $(1)$ is:
$u(x,t)=frac{1}{2}[f(x-t)+f(x+t)] tag 1$
Note we have a Neumman condition the we need make even periodic extension
Then
begin{equation}
f(x) = left{
begin{array}{ll}
sin(x) & mathrm{if } 0<x<frac{pi}{2} \
-sin(x) & mathrm{if } -frac{pi}{2}<x<0 \
end{array}
right.
end{equation}
such that $f(x pm pi/2)=f(x)$
This implies:
$
begin{equation}
f(x-t) = left{
begin{array}{ll}
sin(x-t) & mathrm{if } 0<x<frac{pi}{2} \
-sin(x-t) & mathrm{if } -frac{pi}{2}<x<0 \
end{array}
right.
end{equation}
$
and
$
begin{equation}
f(x+t) = left{
begin{array}{ll}
sin(x+t) & mathrm{if } 0<x<frac{pi}{2} \
-sin(x+t) & mathrm{if } -frac{pi}{2}<x<0 \
end{array}
right.
end{equation}
$
Is correct this?
pde
Solve the PDE:
$begin{equation}
frac{partial^2u}{partial t^2} - frac{partial ^2 u}{partial x^2}=0, qquad 0<x<L,quad t>0 \
u(x,0)=f(x) qquad frac{partial u}{partial t }(x,0)=g(x)
end{equation}$
Find $u(x,t)$ for the values $f(x)=sin x$, $quad g(x)=0$ when $u(0,t)= 0$ and $frac{partial u}{partial x}(pi /2,t)=0$
My attempt
We know the PDE is only a wave equation, then applying D'Alembert formula we have:
$u(x,t)=frac{1}{2}[f(x-ct)+f(x+ct)]+frac{1}{2c}int^{x+ct}_{x-ct}g(s)ds. tag 1$
As $g(x)=$0 then $(1)$ is:
$u(x,t)=frac{1}{2}[f(x-t)+f(x+t)] tag 1$
Note we have a Neumman condition the we need make even periodic extension
Then
begin{equation}
f(x) = left{
begin{array}{ll}
sin(x) & mathrm{if } 0<x<frac{pi}{2} \
-sin(x) & mathrm{if } -frac{pi}{2}<x<0 \
end{array}
right.
end{equation}
such that $f(x pm pi/2)=f(x)$
This implies:
$
begin{equation}
f(x-t) = left{
begin{array}{ll}
sin(x-t) & mathrm{if } 0<x<frac{pi}{2} \
-sin(x-t) & mathrm{if } -frac{pi}{2}<x<0 \
end{array}
right.
end{equation}
$
and
$
begin{equation}
f(x+t) = left{
begin{array}{ll}
sin(x+t) & mathrm{if } 0<x<frac{pi}{2} \
-sin(x+t) & mathrm{if } -frac{pi}{2}<x<0 \
end{array}
right.
end{equation}
$
Is correct this?
pde
pde
asked Nov 12 at 16:28
Bvss12
1,715617
1,715617
add a comment |
add a comment |
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2995518%2fsolve-a-wave-equation-using-dalembert-solution%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown